MODELLBILDUNG UND SIMULATION
MIT COACH6 – LERNMATERIALIEN
FÜR LEHRER UND SCHÜLER

Mag. Johannes Schüssling
Bundesgymnasium Bregenz Blumenstraße

Bregenz, Juli 2005
INHALTSVERZEICHNIS

INHALTSVERZEICHNIS ... 2

ABSTRACT .. 5

1 MODELLBILDUNG UND SIMULATION MIT COACH6 ... 6
1.1 Allgemeines zu Modellbildung und Simulation ... 6
1.2 Modellbildung und Simulation in der Schule ... 7
1.2.1 Einsatzmöglichkeiten von Modellbildung und Simulation im Unterricht 7
1.2.2 Vieles lernt man/frau „so ganz nebenbei“! ... 8
1.3 Das Programm-Handling für Modellbildung und Simulation mit Coach6 9
1.3.1 Das Modelfenster (model window) .. 10
1.3.2 Wichtiges zum Grafikmodus von Coach6 ... 12
1.3.3 Exemplarische Modellbildung im Grafikmodus ... 16
1.3.4 Exemplarische Modellbildung im Textmodus .. 19
1.3.5 Auswertung von Modellen in Diagrammen und Tabellen 20
1.3.6 Modellsimulationen mit Parameter Exploration .. 24
1.3.7 Run-Kontroller und Monitoring in Coach6 .. 26

2 MIT COACH6 BEARBEITBARE AUFGABEN AUS DER MATHEMATIK UND DER PHYSIK ... 29
2.1 Aufgaben aus der Mathematik ... 29
2.1.1 Umfang und Fläche eines Kreises abhängig vom Radius .. 30
2.1.2 Radius und Fläche eines Kreises abhängig vom Umfang .. 31
2.1.3 Erforschung von Oberfläche und Volumen einer Kugel ... 33
2.1.4 Rechtecke bei konstantem Umfang .. 34
2.1.5 Rechtecke bei konstantem Flächeninhalt .. 35
2.1.6 Minimale Oberfläche eines quadratischen Quaders bei fixem Volumen 37
2.1.7 Stammfunktion der konstanten und linearen Funktion .. 38
2.1.8 Stammfunktion der Cosinusfunktion ... 41
2.1.9 Stammfunktion der Sinusfunktion .. 43
2.2 Aufgaben aus der Physik ... 47
2.2.1 Der freie Fall .. 48
2.2.2 Der horizontale Wurf ... 50
2.2.3 Der senkrechte Wurf ... 51
3.2.10 Die ISS (International Space Station) ... 132
3.2.11 Das radioaktive Zerfallsgesetz ... 136
3.2.12 Das prozentuelle Wachstum ... 138
3.2.13 Die Radioaktive Zerfallskette ... 140
3.2.14 Kaffee kühlt ab ... 142
3.2.15 Die Entladung eines Kondensators ... 144
3.2.16 Das Aufladen eines Kondensators ... 146
3.2.17 Der Astronaut altert langsamer, wenn .. 147
3.3 Einige Protokolle ... 150
 3.3.1 Protokoll zu: Minimale Oberfläche eines quadratischen Quaders bei fixem Volumen ... 150
 3.3.2 Protokoll zu: Stammfunktion der Sinusfunktion 152
 3.3.3 Protokoll zu: Das horizontale Federpendel ... 155

4 LITERATUR .. 160
ABSTRACT

Schulstufe: 7. bis 12. Schulstufe
Fächer: Physik und Mathematik
Kontaktperson: Mag. Johannes Schüßling
Kontaktadresse: BG Bregenz Blumenstraße, 6900 Bregenz; joschue@aon.at
1 MODELLBILDUNG UND SIMULATION MIT COACH6

Mit der Coach6-Software allein - also ohne jegliche andere nötige Hardware - kann man Modellbildung betreiben und durch Simulationen Phänomene untersuchen, wobei sich Themen aus allen Naturwissenschaften sowie auch aus dem Bereich der Sozial- und Wirtschaftswissenschaften behandeln lassen.

Diese Coach-Software wird in zahlreichen europäischen Staaten an verschiedensten Bildungseinrichtungen eingesetzt. Außer in den Niederlanden kommt dabei überall eine englische Benutzeroberfläche zum Einsatz, was den Schülern/innen nach kurzer Einarbeitungszeit keinerlei Probleme bereitet.

1.1 Allgemeines zu Modellbildung und Simulation

Neue Impulse bekamen Modellbildung und Simulation dadurch, dass Computer schnell und genau jede mathematische oder logische Formulierung in beliebigen Kombinationen abarbeiten können. Das Training eines Piloten im Flugsimulator zeigt exemplarisch auf, dass so in vielen Bereichen der menschlichen Erfahrung neue
Möglichkeiten entstanden sind, komplexe dynamische Entwicklungen darzustellen, zu simulieren und besser zu verstehen.

Zu wissen, was geschehen wird oder geschehen könnte, kann u. U. eine Bedeutung haben, die weit über die Neugierbefriedigung hinausgeht und sogar über Leben und Tod entscheidet. Die zukünftige Entwicklung dynamischer Systeme wie soziale Prozesse, Bevölkerungsentwicklungen, Stadtentwicklungen oder auch wie die globalen Klimaveränderungen wird durch verschiedene Modellbildungen prognostiziert. Mögliche Szenarien werden so aufgezeigt, wobei diese um so zuverlässiger ausfallen, je besser in diesen Modellen die Wirkungsweise des realen Systems nachgebildet ist.

1.2 Modellbildung und Simulation in der Schule

Seit dem Einzug des PCs/Notebooks in den Schulalltag bieten sich auch hier zahlreiche Möglichkeiten, vermehrt Methoden der Modellbildung und Simulation zu unterrichten und einzusetzen. Da der Computer schließlich auf mathematische und logische Formulierungen der Themen angewiesen ist, lassen sich auf den ersten Blick vor allem naturwissenschaftliche Fragestellungen damit behandeln, da diese schon weitgehend in formaler Sprache vorliegen.

1.2.1 Einsatzmöglichkeiten von Modellbildung und Simulation im Unterricht

In Notebooksklassen oder wenn die Klasse in einem PC-Netzwerkaal unterrichtet wird, könnten die Aufgabenstellungen als Einzelarbeit oder als Teamarbeit in Zweiergruppen gelöst werden. Das grundlegende Programmhandling wird den Schülern/innen mit Hilfe eines Beamers vorgeführt oder sie lernen das Handling mit Hilfe von Demokurzfilmen zu wichtigen oder schwierigen Arbeitsschritten, die sie dann Schritt für Schritt abspielen lassen und nachvollziehen können.

Abhängig vom Alter, vom Vorwissen und Interesse der Schüler/innen, aber auch davon, wie oft man schon Aufgaben zur Modellbildung und Simulation mit der Klasse behandelt hat, könnte man drei Schwierigkeitsstufen anführen, bei denen unterschiedlich große Ansprüche an die Schüler/innen gestellt werden:

- **Stufe 1**: Die Schüler/innen bekommen ein fertiges Modell mit dem Auftrag, den Einfluss bestimmter Parameter auf bestimmte Ergebnisse zu studieren. Sie beantworten die gestellten Fragen und dokumentieren ihre Antwortfindung durch die Übernahme von Diagrammen aus dem Coach6-Projekt in ein Wordprotokoll. Bei diesem Anspruchsniveau wird auf die Tätigkeit des Modellierens bewusst verzichtet.
• **Stufe 2:** Die Aufgabenstellung wird mit den Schülern/innen gemeinsam vorbe-
sprochen. Sie erhalten dabei Informationen über wichtige Teile des zu erstel-
len-Modelled, welche dann eventuell schon in einem Coach6-Projektfile in
einer Aktivität „Vorlage“ bereitgestellt werden. Bei leichteren Modellen kann
man darauf auch verzichten. Nach erfolgreicher Modellbildung wird das Mo-
dellfenster, in dem die Formulierung des Modells enthalten ist, ins Protokoll
übernommen und es werden wie bei Stufe 1 die gestellten Fragen beantwortet
und dokumentiert.
• **Stufe 3:** Die Schüler/innen bekommen eine Aufgabenstellung, welche nur
verbal formuliert ist. Eventuell könnten sie auch sinnvolle Fragestellungen er-
arbeiten müssen. Die Dokumentation erfolgt wie in Stufe 2.

1.2.2 Vieles lernt man/frau „so ganz nebenbei“!

Hauptziel der Modellbildung und Simulation zu einer gestellten Aufgabe ist selbstver-
ständlich das bessere Verständnis des zu untersuchenden Phänomens. Auf dem
Weg dort hin fällt aber zusätzlich einiges ab.

Wenn das Modell einer gestellten Aufgabe steht, erfolgt die Auswertung eigentlich
immer in einem oder in mehreren Diagrammen. Das Gestalten, Skalieren und Inter-
pretieren von Diagrammen ist ein ganz wichtiger Teil der nötigen Erforschungsarbeit.
Wie wirkt sich die Verdopplung, die Halbierung, die Verdreifachung, das Vergrö-
ßern, das Verkleinern des Wertes eines Parameters auf das Gesamtergebnis aus?
Die Antworten solcher Fragestellungen werden aus Diagrammen herausgelesen.
Durch das Einpassen mathematischer Funktionen in die vom Modell berechneten
Graphen, durch das Bestimmen von Steigungen der Graphen und von Flächen zwis-
chen einem Graphen und der Achse der unabhängigen Größe lässt sich das Mo-
dell-Geschehen noch in weiteren Details analysieren. Tabellen, welche die Werte
enthalten, die bei der schrittweisen Durchrechnung des Modells entstehen, liefern
zusätzliche Informationen.

Durch das schrittweise Durchrechnen eines Modells könnten auch Themen behandelt
werden, wofür bei direkter Berechnung „kompliziertere“ Funktionen und Berech-
nungsverfahren nötig wären, die man erst in den höchsten Klassen der Gymnasien
oder der höheren berufsbildenden Schulen lernt und die für manche Schüler/innen
eine recht große Herausforderung darstellen. So lassen sich also z. B. mit den Defi-
nitionen für die Beschleunigung und für die Geschwindigkeit und mit dem zweiten
Newtonzsche Axiom ohne das Lösen einer Differentialgleichung fast alle Bewegun-
gen behandeln.

Coach bietet behutsame Unterstützung für den Einsatz der Mathematik bei der Aus-
wertung von Daten an, die bei Messungen oder bei der Durchrechnung von Modellen
entstehen. Die Verwendung der Mathematik fällt dadurch recht leicht, auch mathe-
matische Kenntnisse werden durch ihre Anwendung vertieft, ihr erfolgreicher Einsatz
macht sogar Spaß.

Während Coach5 für die Modellbildung nur einen Textmodus kennt, gibt es beim
neuen Coach6 zusätzlich einen Grafikmodus, wie er auch bei anderen guten Modell-
lierungs- und Simulationsprogrammen zur Verfügung steht. Im ersten Schritt werden
dabei die Variablen und Konstanten als grafische Symbole ins Modellfenster gesetzt
und mit Hilfe von Verbindungspfeilen festgehalten, welche Größen welche beeinflus-
sen. Wenn so die qualitativen Zusammenhänge der für das zu behandelnde Problem
relevanten Größen feststehen, müssen diese dann noch in einem zweiten Schritt

Im Textmodus sind einfache Programmzeilen mit einer einfachen Syntax ins Modellfenster zu schreiben. Wenn man in der Lage ist, sogar eine Verzweigung zu programmieren (If ... Then ... Else ... Endif), kann eigentlich jedes Modellierungsproblem im Textmodus behandelt werden.

Bei der Entwicklung und Formulierung eines Modells kann man sehr schön auch aus Fehlern lernen, weil die Folgen von Modellveränderungen bei der Ausführung (Durchrechnung) sofort im Diagramm sichtbar werden. Sobald die Grundzüge eines Modells stehen, wird deren Richtigkeit mit einem Diagramm getestet. Wenn nun in einem Verfeinerungsschritt z.B. eine Reibungskraft berücksichtigt werden soll, welche zu einer Dämpfung einer harmonischen Schwingung beiträgt, die Amplitude bei der Durchrechnung aber größer wird, dann wird jedem bald klar, dass die Reibungskraft offensichtlich im Modell mit einem falschen Vorzeichen eingebaut worden ist.

1.3 Das Programm-Handling für Modellbildung und Simulation mit Coach6

Wie die Tätigkeiten in Coach organisiert werden, soll am Beispiel „Der Schiefe Wurf“ gezeigt werden:

Nur in Aktivitäten vom Typ 'Modeling' steht dem Benutzer die Schaltfläche für das Öffnen des Modellfensters (model window) zur Verfügung.

1.3.1 Das Modellfenster (model window)

Hier sieht man das Hauptmenü und die Symbolleiste, wie sie von Coach6 angeboten werden, wenn man sich in einer Aktivität vom Typ Modeling befindet.

Die beiden wichtigen Hauptmenüpunkte sind File und Options.

Obwohl die verwendeten Symbole eigentlich alle selbsterklärend sind, wird die Bedeutung der jeweiligen Schaltfläche angezeigt, wenn man mit dem Mauszeiger über ein Icon der Symbolleiste fährt.

Mit der Tastenkombination [Strg] +[M] oder einem Klick auf das Icon wird das Modellfenster geöffnet, in dem die eigentliche Formulierung des Modells zu erfolgen hat. Mit derselben Tastenkombination oder einem weiteren Klick auf das gleiche Icon kann ein angezeigtes Modellfenster wieder ausgeblendet werden. Beim Ausblenden des Modellfensters bleibt sein Inhalt selbstverständlich erhalten.

Beispiel eines Coach6 - Modellfensters, Grafikmodus

Coach6 zeigt automatisch zuerst das Modellfenster im Grafikmodus an und lädt so zum Arbeiten in diesem Modus ein. Mit dem Icon könnte man dann sofort in den Gleichungsmodus, mit dem Icon in den Textmodus umschalten.

Das Modellfenster kann aber auch an einen Teil der Coach-Bildschirm-Einteilung angedockt werden. Dies geschieht dadurch, dass man bei gedrückter [Shift]-Taste und gedrückter linker Maustaste das Fenster zu einem Bildschirm-Viertel schiebt und die Maustaste dann löst.

Im Toolbox-Menü des Modellfensters kann dieses unter der Option Undock wieder zu einem freien Fenster gemacht werden.

1.3.2 Wichtiges zum Grafikmodus von Coach6

Am rechten Ende der blauen Bezeichnungszeile des Modellfensters sind neben den bekannten Windows-Fenstersymbolen noch zwei spezielle Coach-Schaltsymbole zu finden. Mit dem „Fit to Screen“-Button wird die Grafikstruktur in ihrer Größe an die aktuelle Modellenstergröße angepasst, und ein Klick auf das Schraubenschlüssel-Symbol öffnet wie ein rechter Mausklick das links dargestellte Kontextmenü. Falls das Modellfenster an einen Bildschirmteil angedockt ist, steht in diesem Kontextmenü zusätzlich die Option Undock zur Verfügung.

Wie überall hängt auch im Modellfenster der angezeigte Inhalt des Kontextmenüs immer davon ab, was mit der rechten Maustaste gerade anklickt wird.

Bei einem Variablensymbol kommt das links dargestellte Menü, beim Klick auf ein Symbol eines enthaltenen Subsystems öffnet sich das hier rechts dargestellte Menü.

Ein Subsystem erzeugt man, indem man mit dem Auswahl-Pfeil mehrere Symbole umschließt und dann aus dem Kontextmenü die Option Create sub system auswählt. Der Einsatz von Subsystemen kann die Lesbarkeit und Übersichtlichkeit bei komplizierteren Modellen erhöhen.

1.3.2.1 Die Sieben Grafiksymbole

| Bestandsgröße/-variable (State variable): sie wird durch einen Anfangswert bestimmt sowie durch eine Änderungsrate, die durch einen Inflow (in die Variable hinein zeigender Pfeil) oder einen Outflow (aus der Variable heraus zeigender Pfeil) gekennzeichnet ist. Der Anfangswert kann auch durch eine Formel mit jenen Variablen festgelegt werden, von denen ein Verbindungspfeil (Connector) zur Bestandsvariable zeigt. |

<table>
<thead>
<tr>
<th>Display as a Graph</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display as a Table</td>
<td>Edit</td>
</tr>
<tr>
<td>Display as a Value</td>
<td>Font...</td>
</tr>
<tr>
<td>Properties</td>
<td>Remove sub system</td>
</tr>
</tbody>
</table>
Änderungsrate/Flussgröße (Flow): ohne Vorzeichen gesetzt zu haben
vergrößert ein Inflow den Wert einer Bestandsgröße, ein Outflow verringert ihn; ist der Wert der Änderungsrate bei einem Inflow negativ, so nimmt der Wert der Bestandsvariablen ab, obwohl es sich um einen Inflow handelt; analoges gilt für den Outflow.

Ein Flow kann auch zwischen zwei Bestandsvariablen stehen und die beiden verbinden; für die eine Variable ist derselbe Flow dann ein Outflow, für die andere ein Inflow.

Eine einzelne Bestandvariable kann auch gleichzeitig einen Inflow und einen Outflow haben.

Die Größe eines Flows hängt von allen Variablen ab, von denen Verbindungspfeile (Connectorpfeile) zu diesem Flow zeigen. Mit einem Formeleditor kann im Eigenschaftenfenster dann die Formel für die Flussgröße festgelegt werden.

Zeigt ein einziger Verbindungspfeil von einer Variablen zu einem Flow, so ist diese Variable gleich dem Wert der Flussgröße.

Die Änderungsrate bezieht sich immer auf die unabhängige Variable des Modells. Sie zeigt auf, wie groß die Änderung einer Bestandgröße ist, wenn sich die unabhängige Variable um 1 ändert. Die tatsächliche Änderung der Bestandsgröße bei der iterativen Durchrechnung ist pro Schritt gleich Flow mal Schrittweite der unabhängigen Variablen.

(Hilfs) Variable (Auxiliary variable): ist eigentlich die „normale“ Variable; ihr Wert wird durch eine Formel bestimmt, welche alle jene Variablen und Konstanten enthält, von denen ein Connectorpfeil dorthin zeigt.

Konstante (Constant): ihr Wert ist fix, trotzdem kann er aber bei der Simulation (Parameter exploration) verändert werden; Coach6 bietet eine Liste naturwissenschaftlicher Konstanten zur Auswahl an.

Verbindungspfeil (Connector): erzeugt eine Beziehung zwischen zwei Variablen des Grafikmodells; eine Variable, auf die der Pfeil zeigt, hängt vom Wert jener Variablen ab, von der der Pfeil ausgeht; die verbundenen Variablen beeinflussen einander in der Pfeilrichtung.

Unabhängige Variable (Independent variable): in der Standardeinstellung ist es die Zeit t; jede andere Größe kann hier aber als unabhängige Variable vereinbart werden; in der Standardeinstellung wird die unabhängige Variable nicht angezeigt; ihr Grafiksymbol kann aber in ihrem Eigenschaftenfenster (Properties) auch sichtbar gemacht werden.

1.3.2.2 Die Dialoge zur Einstellung der Variableneigenschaften (Properties)

Wenn im Modellfenster des Grafikmodus die Struktur des Modells steht, welches sich aus den Variablensymbolen und den eingezeichneten Connectornpfeilen zusammen-
setzt, dann muss das Modell noch durch mathematische und logische Formeln präzi-
siert werden. Dies hat in den Eigenschaftenfenstern der einzelnen Variablen zu er-
folgen, welche durch einen Doppelklick auf deren Symbol geöffnet werden.
Diese Properties-Fenster sind sehr übersichtlich gestaltet und bedürfen eigentlich
keiner zusätzlichen Erklärungen. Die folgenden Abbildungen enthalten auch die
Standardeinstellungen dieser Dialoge.

Durch das Anklicken des Kontroll-
kästchens **Symbol visible in the Model
window** wird die unabhängige Variable im
Modellfenster sichtbar gemacht.
Mit der Schalfläche *Formula* kann der Formel-Editor gestartet werden. Wenn vor der Präzisierung des Modells über die Eigenschaftenfenster alle Connectorpfeile gesetzt worden sind, stellt der Formeleditor jeweils die nötigen Variablennamen zur Auswahl zur Verfügung.

Bei der Definition mancher der Flow- und Auxiliary-Variablen kann auch eine Bedingung (siehe Kontrollkästchen bei *Use condition*) Verwendung finden.

![Eigenschaftenfenster der Ereignis-Variablen](image)

Ein Beispiel: nach 20 m Bremsweg (x) sei die Fahrbahn vereist; das Ereignis heißt *Glatteis*; bei *Trigger condition* wird $x \geq 20$ eingetragen; mit der [Add]-Schaltfläche wird als Aktion die Bremsverzögerung a von sonst 4 m/s² auf $a=0.5$ verkleinert.

Durch eine Ereignis-Variable kann nur der Wert von Bestandsgrößen (State variable) beeinflusst werden.
Bei 'Position' legen wir in allen Eigenschaftenfenstern die „Himmelsrichtungen“ fest, d.h. wir fixieren, ob die Beschriftung eines Grafiksymbols oberhalb (North), rechts (East), unterhalb (South) oder links (West) vom Symbol angezeigt werden soll.

Wo immer die Eingabe einer Formel nötig ist, steht auch ein Formeleditor zur Verfügung. Dabei werden aber neben den Operatoren und mathematischen Funktionen nur jene Variablenamen angezeigt, von denen ein Connectorpfeil auf das Symbol des gerade geöffneten Eigenschaftenfensters zeigt. Im Formeleditor können auch vordefinierte Konstanten aus einer Datenbank ausgewählt werden.

1.3.3 Exemplarische Modellbildung im Grafikmodus

Die Aufgabenstellung für unser Musterbeispiel: Mit Hilfe eines Modells soll die Abhängigkeit der Geschwindigkeit v während des Anhalteweges x untersucht und in einem Diagramm dargestellt werden.

Schritt 1:

Die nötigen Variablen und Flows werden als Symbole ins Modellfenster gesetzt, formatiert und beschriftet.

Zur Information kann auch die unabhängige Variable Zeit t(s) angezeigt werden.

Da v abnimmt, wählen wir dort einen Outflow, für die Bestandsgröße x wählen wir einen Inflow, da der Weg x im Laufe der Zeit zunimmt. Bei der Wahl des Berechnungsverfahrens haben wir die Standardeinstellung „Eulersche Methode“ belassen.

Schritt 2:

Es werden die Connectorpfeile eingebaut, wie sie links zu sehen sind. a und die ReaktionsZeit beeinflussen den Outflow von v; v beeinflusst den Inflow des Weges x. Von t(s) zum Outflow von v muss der Connectorpfeil nicht ge-
zeichnet werden, da er später automatisch vom Programm gemacht wird, wenn wir den Outflow definieren. Da dieser Outflow also von mehreren Größen beeinflusst wird, muss seine Größe im Eigenschaftenfenster mit dem Formeleditor festgelegt werden (siehe Schritt 3).

Schritt 3:

Die Modell-Einstellungen (Model settings):
Vor der Beschreibung der Diagramm-Auswertung des Modells soll hier noch das Thema Modell-Einstellungen behandelt werden.

Wie oft soll das Modell durchgerechnet werden? In welcher Schrittweite soll dabei die unabhängige Variable erhöht werden? Wann soll die Durchrechnung des Modells beendet werden? Solche Fragen werden im Dialog der Modell-Einstellungen geklärt, der durch einen Klick auf die drittletzte Schaltfläche der Symbolleiste im Grafikmodus-Modellfenster geöffnet wird.

Das links dargestellte Setting hat folgende Auswirkungen:

Wenn die unabhängige Variable t den Wert 10 erreicht hat, stoppt die Berechnung. Als Schrittweite ist 0.01 eingestellt. Als Berechnungsmethode kommt die Standardmethode nach Euler zur Anwendung.

Diese Einstellungen führen bei unserem Beispiel dazu, dass zu lange gerechnet wird,
dass negative Geschwindigkeiten errechnet werden, und dass das bremsende Fahrzeug schließlich gar wieder zurückfährt. Auch wenn man diese unsinnigen Ergebnisse bei einer günstigen Skalierung der Diagramme gar nicht sieht und vielleicht im Grafikfenster nur ein paar unverständliche angezeigte Zahlen bemerkt, sind diese Modell-Einstellungen sicher unbefriedigend und stellen keine akzeptable Lösung dar.

Mit den Modell-Einstellungen des nächsten Bildes sind alle Probleme behoben, da die Durchrechnung dann abbricht, wenn die Geschwindigkeit v den Wert Null erreicht oder unterschreitet. Als Berechnungs methode ist jene nach Runge-Kutta (RK2) ausgewählt, was bei unserem Musterbeispiel aber sicher nicht nötig wäre.

Bei ganz „sensiblen“ Modellen von oszillierenden Körpern kann die Berechnungsmethode nach Euler zu einer Schwingung führen, bei der sich ohne ersichtlichen Grund die Amplitude „aufschaukelt“. Wenn dann solche Modelle nach Runge-Kutta durchgerechnet werden, ist dieser „Spuk“ vorbei und die Amplitude bleibt konstant.

In diesem Modell-Einstellungsdialog kann man auch dafür sorgen, dass ein sogen. Run-Control ler angezeigt wird, mit dem man die Geschwindigkeit der Modellausführung steuern kann.

Die Schrittweite (Step interval) betreffend sollte schon bei einfachen Beispielen von Schülern/innen erforscht und erkannt werden, dass die Ergebnisse umso exakter werden, je kleiner diese Schritte gewählt werden.

Diese hier beschriebene Erstellung des Modells zum Musterbeispiel Anhalteweg können Sie auch in einem TurboDemo-Kurzfilm mit dem Titel „Grafikmodell_Anhalteweg“ studieren; der Film ist im Downloadbereich bereitgestellt.

Zum Konvertieren von Modellen:

Ein Grafikmodusmodell, das von Coach6 in den Textmodus konvertiert worden ist, erscheint aber recht umständlich formuliert. Ganz sicher kommt man viel einfacher zum Ziel, wenn man dasselbe Modell selbst gleich im Textmodus gestaltet.

Leider können selbst geschriebene Textmodellmodelle und somit auch alle Coach5-Modelle von Coach6 nicht in den Grafikmodus umgewandelt werden. Versucht man
dies trotz Warnung zu machen, geht der ganze Programmcode im Textmodus verlo-
ren.

Man kann aber ein Grafikmodusmodell in den Textmodus konvertieren und dann wieder zurück in den Grafikmodus wechseln, falls man im Textmodus keinerlei Ver-
änderungen am Modell vornimmt. Dies könnte bei der Fehlersuche während der Entwicklung eines Modells eventuell vorteilhaft sein.

1.3.4 Exemplarische Modellbildung im Textmodus

Nach dem Umschalten in den Textmodus über die Schaltfläche bietet Coach6 das hier abgebildete Modellfenster mit folgendem Inhalt an.

![Model window](image)

In links Teil des Modellfensters werden die Programm-
Anweisungen zur Durchrechnung geschrieben, im rechten
Teil sind die unabhängige Variable und deren Schrittweite,
die Startwerte der Variablen sowie die Konstanten verein-
bart.

Das Schraubenschlüssel-Icon in der Kopfzeile des Modell-
fensters öffnet so wie auch ein rechter Mausklick das Kontextmenü.

Über die erste Schaltfläche der Symbolleiste kann man mit einem Klick auf das ge-

Über die gelbgrüne Schaltfläche Modelleinstellungen (Model settings) kann festge-
legt werden, nach wie viel Schleifendurchläufen die schrittweise Durchrechnung des Modells auf jeden Fall beendet werden soll. Mit der Programmzeile
\[
\text{If Bedingung then stop EndIf}
\]

wird die Durchrechnung des Modells beendet, sobald diese Beding-
gung wahr ist.

Nachfolgend ist die Textmodus-Lösung derselben Fragestellung zum Anhalteweg
dargestellt, wie sie im vorigen Kapitel 1.3.3 im Grafikmodus behandelt wird.
Nach einem einfachen Hochkomma steht jeweils ein Kommentartext für eine bessere Lesbarkeit des Modells.

Ein Gleichheitszeichen kann in Coach zwei verschiedene Bedeutungen haben: Entweder ist es ein Vergleichsoperator oder ein Zuordnungsbefehl.

Damit Schüler/innen Zuordnungen der Form \(t = t + dt \) nicht als „falsche Gleichung“ interpretieren, ist es zweckmäßig, sie – in Anlehnung an andere Programmiersprachen - mit einer Kombination aus einem Doppelpunkt und einem Gleichheitszeichen, also \(t := t + dt \), zu schreiben. Das Coachprogramm verlangt dies aber nicht. Bei der Umwandlung eines Modells vom Grafikmodus in den Textmodus schreibt das Programm alle Zuordnungen mit der Kombination aus Doppelpunkt und Gleichheitszeichen.

Die Interpretation solcher spezieller Zuordnungen soll an Hand zweier Beispiele noch verdeutlicht werden:

1) \(v := v + dv \) die neue Geschwindigkeit ist die alte Geschwindigkeit vermehrt um die Geschwindigkeitsänderung \(dv \), wobei \(dv \) das Produkt aus aktueller Beschleunigung \(a \) und dem Zeitintervall \(dt \) ist \((dv=a*dt \text{ oder gleich } v := v + a*dt) \).

2) \(y := y + vy*dt \) die neue y-Koordinate ist gleich die alte y-Koordinate vermehrt um das Produkt aus aktueller y-Komponente der Geschwindigkeit \(v \) und dem Zeitintervall \(dt \).

Bei diesen Beispielen wird auch sichtbar, dass bei allen Bewegungen die Größe des gewählten Zeitintervalls \(dt \) auch die Änderung der Geschwindigkeit \(dv \) und die Änderung des Ortes \(dx \) bzw. \(dy \) mit beeinflusst.

Genau wie das Grafikmodus-Modellfenster kann auch das Textmodus-Modellfenster als freies Fenster behandelt werden oder an ein Bildschirm-Viertel angedockt werden.

1.3.5 Auswertung von Modellen in Diagrammen und Tabellen

Mit der \([F9]\)-Taste oder durch einen Klick auf das grüne Startpfeil-Icon in der Symbolleiste einer Aktivität wird die schrittweise Durchrechnung eines Modells ausgelöst. Dabei wird im Hintergrund eine Tabelle angelegt, welche alle errechneten Werte enthält. Damit können dann die unterschiedlichsten Diagramme gezeichnet werden.
Wie in der Aufgabenstellung verlangen wollen wir nun für unser Anhalteweg-Modell ein v-x-Diagramm erzeugen.

Bei einem Mausklick auf das Icon \textit{Display Diagram} in der Symbolleiste der Aktivität öffnet sich der links dargestellte Dialog \textit{Select a diagram}, in dem die Schaltfläche \textit{New diagram} auszuwählen ist.

Aus der im Hintergrund bestehenden Datenmatrix, die bei der Durchrechnung des Modells entsteht, muss nun eine Diagrammatabelle gemacht werden, mit deren Hilfe die Graphen gezeichnet werden.

Beim Klick auf \textit{New diagram} öffnet sich der folgende Dialog.

Im \textit{Create/Edit diagram} Dialog ist folgendes zu tun:

1. Diagrammname eingeben,
2. Gitternetzlinien auf sichtbar schalten,
3. unter \textit{Connection} den Spalten (C1 C2 ...) der jetzt entstehenden Diagrammatabelle die gewünschten Variablen und Achsen zuordnen,
4. Skalierungen der Achsen vornehmen,
5. den Graphen formatieren.

Die Daten der Variablen x werden der Spalte C1 zugeordnet; x wird auf der horizontalen Achse des Diagramms angezeigt; die Achsenbeschriftung besteht aus dem Variablennamen x und der Einheit m, die im Diagramm in Klammer dahinter stehen wird, die Achsenskalierung geht von 0 (Min) bis 130 (Max), x-Werte werden mit null Dezimalstellen angezeigt.
So erfolgt die Zuweisung der Variablenwerte von \(v \) an die Spalte \(C2 \) der Diagrammtabelle.
Alle vereinbarten Modellvariablen werden dabei zur Auswahl angeboten, falls sie nicht schon – wie hier \(x \) – einer anderen Spalte zugeordnet worden sind.

Da die Variable \(x \) schon auf der horizontalen Achse angezeigt wird, bietet Coach6 an, die Variable \(v \) auf der ersten vertikalen Achse darzustellen.
Bei \textit{Quantity} wird der Name der Variablen als Bezeichnung für die Achse übernommen.
Bei \textit{Unit} muss die Maßeinheit der abhängigen Größe \(v \) eingesetzt werden.
Die Achsenskalierung erfolgt wie oben beschrieben.
In der untersten Zeile dieses Dialogs wird der Graph des Diagramms formatiert.

Durch einen Klick auf die OK-Schaltfläche wird die Diagrammerstellung abgeschlossen. Es wird ein kleines schwarzes Diagrammsymbol sichtbar, das mit der Maus in das gewünschte Bildschirm-Viertel gezogen wird und dort mit einem linken Mausklick positioniert wird. Danach sieht man folgendes Diagramm; falls aber noch keine Modelldurchrechnung erfolgt ist, fehlt der Graph.

Mit **Display as a Table** kann die Diagrammtabelle in einem Bildschirm-Viertel angezeigt werden. Diese könnte beim Scannen im Diagramm oder bei der Suche nach einem Fehler des Modells interessant sein.

Der **Scan**-Modus ist hilfreich bei der Interpretation des Diagramms; die aktuellen Werte werden in den Diagrammen jeweils rechts oben angezeigt. Falls eine Aufgabe mit mehreren Diagrammen bearbeitet wird, werden in allen Diagrammen die zusammengehörigen Werte sichtbar gemacht. Falls gleichzeitig auch eine Tabelle auf dem Bildschirm sichtbar ist, wechselt diese automatisch in jene Tabellenzeile, in der der entsprechende Datensatz steht. Mit **Stop scanning** (steht erst nach dem Ein- schalten des Scan-Modus im Menü) soll der Scan-Modus wieder ausgeschaltet werden.

Über **Create/Edit diagram** wird das Diagramm so gestaltet, wie man es gerade haben will. Beim Lösen einer Aufgabe werden dabei immer wieder Veränderungen und Optimierungen vorgenommen. Falls man in einer Spalte der Diagrammtabelle etwa durch das Einpassen einer mathematischen Funktion Daten hat, welche man dort nicht mehr haben will, löscht man diese Daten, indem man in diesem Dialog für diese Spalte die **Connection** auf **Empty** stellt.

Im Diagramm-Kontextmenü ist der Menüpunkt **Import background graph** bei der Untersuchung von Modellbildungsgraphen dann interessant, wenn innerhalb eines Modells einzelne Parameter so optimiert werden sollen, dass das Modell möglichst gut den Graphen eines dazu passenden Messexperiments widergibt. Beispielsweise könnte so das Modell für die Abkühlung einer heißen Tasse Kaffee (Wasser) durch ein einfaches Temperatur-Messexperiment, welches ebenfalls mit Coach6 ausgeführt wird, optimiert werden.

Wenn man ein Modell mehrmals mit unterschiedlichen Parametern durchrechnet, entstehen sog. Backgroundgraphen, welche nicht mehr farbig sind, sondern nur noch hellgrau gezeichnet sind. Falls ein Diagramm mindestens einen Backgroundgraphen enthält, können diese Linien mit der Option **Delete background graphs** aus dem Diagramm gelöscht werden.
Die Analyse-Option bietet ein interessantes Untermenü an, das links zu sehen ist.
Mit Slope können Steigungszahlen von Graphen ermittelt werden.
Mit Area lassen sich Flächen zwischen einem Graphen und der horizontalen Diagramm-Achse bestimmen (numerische Integrationen).

Die Option Function-fit bietet die Möglichkeit, mathematische Funktionen in Diagramm-Graphen einzupassen. Aus den Parametern dieser eingepassten Funktionen können dann interessante Erkenntnisse gewonnen werden, wenn man die Bedeutung dieser Parameter kennt. Als Beispiel sei hier das y-t-Diagramm eines Oszillators angeführt; wenn die Funktion \(y(x) = a \sin(b x + c) + d \) eingepasst worden ist, dann entspricht der Wert des Parameters \(b \) der Winkelgeschwindigkeit, aus der leicht Frequenz und Periodendauer der Schwingung berechnet werden können. Coach6 bietet dabei elegant Hilfestellung an. Das Thema Funktionen aus der Mathematik wird in die Überlegungen eingebunden und gefestigt.

Mit der Option Clipboard copy im Diagramm-Kontextmenü kann das Diagramm über die Windows-Zwischenablage in ein Protokoll eines Textverarbeitungsprogramms übernommen werden.

Das Meisterstück beim Erforschen von Modellen und deren Diagramme ist die Option Parameter Exploration, welche in Coach5 noch Simulate genannt wird. Sie soll im nächsten Kapitel besprochen werden.

1.3.6 Modellsimulationen mit Parameter Exploration

Der Einfluss einzelner Parameter auf die Entwicklung eines modellierten dynamischen Systems kann mit der Option Parameter Exploration des Diagramm-Kontextmenüs optimal studiert und sichtbar gemacht werden.
Es öffnet sich der oben sichtbare Dialog. Zuerst wird jener Parameter ausgewählt, dessen Wert variiert werden soll. Hier sollen Werte zwischen 0 und 2 Sekunden für die Reaktionszeit mit dem Schieberegler ganz unten eingestellt werden. Für jeden eingestellten Wert wird dann auf die Schaltfläche Execute geklickt. Dabei wird das Modell für diesen Wert durchgerechnet und sein Graph ins Diagramm gezeichnet.

Wenn die Reaktionszeit null Sekunden ist, dann ist der Anhalteweg gleichzeitig auch der Bremsweg, da der Reaktionsweg in diesem Fall null Meter ist.

Ohne die Bremswegformel \(s_b = \frac{v^2}{2a} \) zu kennen, kommt man auch durch das Simulieren der Geschwindigkeit \(v \) bzw. der Bremsverzögerung \(a \) zu wichtigen Erkenntnissen:

Wir variieren zuerst bei einer Bremsverzögerung \(a = 4 \text{m/s}^2 \) die Geschwindigkeit \(v \):

Siehe dazu das Diagramm auf der nächsten Seite!

Wenn die Geschwindigkeit von 10 m/s auf 20 m/s verdoppelt wird, dann nimmt der Bremsweg laut dieser Simulation von 12,8 m auf 49,9 m zu, er steigt auf das 3,9-fache an, - großzügig betrachtet könnte man sagen - er vervierfacht sich.

Bei der Verdreifachung der Geschwindigkeit von 10 m/s auf 30 m/s steigt der Bremsweg von 12,8 m auf etwa 113 m an, er wird also fast 9-mal (genauer Faktor: 8,82) größer. Die Behauptung, dass der Bremsweg vom Quadrat der Geschwindigkeit abhängt, wird mit diesen Simulationsergebnissen recht deutlich untermauert.
Mögliche Simulations-Ergebnisse für den Bremsweg bei Variation der Bremsverzögerung a könnten wie folgt aussehen:

Das Diagramm zeigt die Abnahme der Geschwindigkeit v auf dem Bremsweg x bei unterschiedlich großer Bremsverzögerung a.

Wenn sich a von 4m/s^2 auf 2m/s^2 halbiert, dann verdoppelt sich der Bremsweg. Wenn a auf ein Viertel absinkt, steigt der Bremsweg auf das Vierfache an. Der Bremsweg ist offensichtlich indirekt proportional zu a.

In der Berechnungsformel für den Bremsweg muss also die Fahrgeschwindigkeit v im Zähler stehen und ein Quadrat haben, während die Bremsverzögerung a ihren Platz im Nenner des Termes hat.

1.3.7 Run-Kontroller und Monitoring in Coach6

Der Einsatz dieses Run-Kontrollers ist in der Entwicklungsphase des Modells oder bei der Fehlersuche eine interessante Unterstützung. Bei fertigen Modellen kann man bei einer entsprechend eingestellten Geschwindigkeit das Modell so ausführen,
dass man seine Entwicklung im Diagramm bei dem/den Graphen und im Modellfenster durch die Anzeige aktueller berechneter Werte mitverfolgen kann.

Im Grafikmodus hat der Run-Kontroller folgendes Aussehen:

![Grafikmodus Run-Kontroller](image)

Bei im Textmodus vorliegenden Modellen gestaltet sich das Monitoring ein bisschen anders. Gestartet wird es wie im Grafikmodus durch die Anzeige des Run-Kontrollers über das Kontextmenü des Modellfensters. Nach einem Klick auf das Start-Symbol des Run-Kontrollers verändert sich das Textmodus-Modellfenster zu einem Monitorfenster:

![Textmodus Monitorfenster](image)

Auf der rechten Seite des Fensters werden jetzt nicht mehr die Anfangswerte der Variablen, sondern ihre aktuell Werte angezeigt. Ergänzend wird der **rowindex** sichtbar, der angibt,
in welchem Durchlauf sich die Berechnung gerade befindet. Im linken Teil des Monitorfensters wird jene Befehlszeile blau unterlegt, welche gerade abgearbeitet wird.

Anstelle der normalen Symbolleiste des Modellfensters werden drei Monitor-Schaltsymbole angezeigt:

Mit dem [1]-Icon geht’s bei der Berechnung pro Klick um eine Befehlszeile weiter, mit dem [<]-Icon geht’s um eine Befehlszeile zurück und mit dem grünen Icon wird die Durchrechnung mit jener Geschwindigkeit ausgeführt, die im Run-Kontroller eingestellt worden ist. Mit der ESC-Taste oder einem Klick auf die Pause-Schaltfläche des Run-Kontrollers kann die ablaufende Durchrechnung unterbrochen werden.
2 MIT COACH6 BEARBEITBARE AUFGABEN AUS DER MATHEMATIK UND DER PHYSIK

In diesem Kapitel sollen Aufgaben vorgestellt werden, die von Lehrern/innen sowie von Schülern/innen mit den Hilfestellungen dieser Arbeit bearbeitet werden können. Voraussetzung dafür sind der Besitz des Coach6-Programmes und Grundkenntnisse im Bedienen dieses Programms, die man sich in Workshops des Autors aber auch über das Studium des Kapitels 1.3 beschaffen kann.

Zu jeder hier vorgestellten Aufgabe wird im Kapitel 3 ein detailliertes Arbeitsblatt angeboten. Zu manchen Themen kann man als Unterstützung auch Demofilme im Downloadbereich dieser Studie herunterladen.

So können diese Aufgaben ohne allzu viel Aufwand von Lehrern/innen sowie von interessierten Schülern/innen realisiert werden.

Manche vorgestellte Aufgabe bietet auch die Gelegenheit an, das in Kapitel 1.3 beschriebene Handling-Repertoire ein bisschen zu erweitern.

2.1 Aufgaben aus der Mathematik

Auch in der Mathematik können durch Modellbildung und Simulation Fragestellungen bearbeitet werden.

Mit dem Wissen, dass das numerische Integrieren ein Aufsummieren von Flächenelementen ist, können so mit einfachen Modellen die Stammfunktionen für die konstante und lineare Funktion sowie für die Sinus- und Cosinusfunktion ermittelt werden.

Da die zur Verfügung gestellten Arbeitsblätter und Protokollvorlagen als Word-Dokumente vorliegen, können die damit arbeitenden Lehrpersonen den Schwierigkeitsgrad der Fragestellungen an die Vorkenntnisse und Leistungsfähigkeit ihrer Schüler/innen anpassen.

Eine Übersicht der hier behandelten Mathematik-Aufgaben:

- Umfang und Flächeninhalt eines Kreises in Abhängigkeit vom Radius
- Radius und Flächeninhalt eines Kreises in Abhängigkeit vom Umfang
- Erforschung von Oberfläche und Volumen einer Kugel
- Rechtecke bei konstantem Umfang
- Rechtecke bei konstantem Flächeninhalt
- Minimale Oberfläche eines quadratischen Quaders mit vorgegebenem Volumen
- Stammfunktion der konstanten und linearen Funktion
- Stammfunktion der Cosinusfunktion
- Stammfunktion der Sinusfunktion
2.1.1 Umfang und Fläche eines Kreises abhängig vom Radius

Zusatzangebot:

Demofilm „So passe ich eine math. Funktion in den Kreisflächengraphen ein“; Arbeitsblatt/Protokollvorlage. Start des Demofilmes

a) Erstellen des Modells

b) Erstellen des Diagramms „Kreis: U und A als Funktion von r“:

Auf der horizontalen Achse des Diagramms soll die unabhängige Variable r mit einer Skalierung von 0 bis 10, auf der ersten vertikalen Achse soll U und auf der zweiten vertikalen Achse A mit der gleichen Skalierung von 0 bis 100 dargestellt werden.

c) Frage- bzw. Aufgabenstellungen:

- Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen des Umfanges eine mathematische Funktion ein; verwende den ersten angebotenen Funktionstyp; drücke die Schaltfläche [Auto fit] und lies den Wert des ersten Koeffizienten ab. Warum ist dieser gleich 6.28?
- Was passiert mit dem Kreis-Umfang, wenn man den Radius verdoppelt oder verdreifacht? Untersuche mit der Scan-Funktion und antworte danach in einem Satz.
- Was passiert mit der Größe der Kreis-Fläche, wenn man ihren Radius verdoppelt? Antworte in einem Satz.
2.1.2 Radius und Fläche eines Kreises abhängig vom Umfang

Zusatzangebot:

Demofilm „So mache ich eine Coach6-Tabelle zur Kreisuntersuchung“; Arbeitsblatt/Protokollvorlage. Start des Demofilmes

a) Erstellen des Modells

![Modell 2 zur Erforschung des Kreises](image)

b) Erstellen des Diagramms „Kreis: Rad und A als Funktion von U“:

Auf der horizontalen Achse des Diagramms soll die unabhängige Variable U mit einer Skalierung von 0 bis 100, auf der ersten vertikalen Achse soll Rad (Skalierung 0 bis 20) und auf der zweiten vertikalen Achse A (Skalierung 0 bis 200) dargestellt werden.

c) Erstellen einer Tabelle „Table 2“:

Neben dem Scanning in Diagrammen helfen Tabellen bei der Analyse. Angenehm ist, dass im Scan-Modus auch die Anzeigen im Diagramm mit jenen in der Tabelle gekoppelt sind. Das linke Bild zeigt, dass bei der unabhängigen Variablen U die Schrittweite 1 eingestellt ist. Der Umfang U soll so von 0 bis 100 variieren. In der Spalte C3 (Delta Rad) wird die Änderung des Radius Rad berechnet, wenn der Umfang jeweils um 1 m größer wird. Dazu muss bei ‘Create/Edit table’ für C3 bei ‘Connection’, ‘Formula’ angewählt und bei der Eingabe der nötigen Formel die mathematische Funktion Delta(C2) verwendet werden. Siehe dazu auch den Demofilm.

d) Frage- bzw. Aufgabenstellungen:

(1) Manchmal lässt uns der Hausverstand im Stich!

Um wie viel ändert sich der Radius, wenn man den Umfang eines Kreises von 1m auf 2m vergrößert?
Die Tabelle oben zeigt, dass sich der Radius dann um 15,92 cm erhöht. Ein Probieren mit geschlossenen Schnüren der Länge 1m und 2m bringt auch kein anderes Ergebnis.

Wenn man den Umfang eines Kreises von 50m auf 51m bzw. von 40 000 000m auf 40 000 001m (ungefährer Erdumfang in m) erhöht, verändert sich der Radius dieser Kreise ebenfalls um genau 15,92 cm. Eigentlich erwarten wir, dass sich der Radius umso weniger verändert, je größer der Umfang schon ist.

Dass sich unser Hausverstand da täuscht, zeigt die Tabelle, kann aus dem Diagramm mehrfach herausgelesen werden und lässt sich auch leicht rechnerisch zeigen.

Wann der Umfang eines Kreises um 1m erhöht wird, vergrößert sich sein Radius immer um 15,92 cm.

- Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen Rad eine mathematische Funktion ein; verwende den ersten oder den zweiten angebotenen Funktionstyp; drücke die Schaltfläche [Auto fit] und lies den Wert des von Null verschiedenen Koeffizienten ab. Warum ist dieser gleich 0.16? Die Steigung einer linearen Funktion ist die Änderung des Funktionswertes, wenn man das Argument (die unabhängige Variable) um 1 erhöht.

- Ermittle mit Analyse/Slope des Diagramm-Kontextmenüs für den Graphen Rad die Steigungszahl. Auch hier erhält man den Wert 0.16. Rechne mit Variablen weiter, bis $r' = r + 0.1592$ dasteht: $U' = U + 1; r = U/(2\pi); r' = U'/(2\pi) = (U + 1)/(2\pi) = \ldots$. Wenn dies durchgerechnet worden ist, ist auch die Entstehung der Zahl 0,1592 klar. Diese ist der Kehrwert von 2π.

Übrigens kann man analog ganz schnell noch leichter zeigen, dass der Umfang eines Kreises immer um $2\pi \times 1m = 6,28m$ größer wird, falls der Radius um 1m anwächst.

(2) Auch die Abhängigkeit der Kreisfläche vom Umfang soll noch untersucht werden.

- Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen A eine mathematische Funktion ein; wähle dazu bei 'Column' die Variable A aus; schaue dich bei den angebotenen Funktionstypen um und verwende schließlich den dritten, obwohl er auf den ersten Blick überhaupt nicht passt; drücke die Schaltfläche [Auto fit] und du wirst angenehm überrascht sein; setze die beiden ganz kleinen Koeffizientenwerte exakt Null, fixiere diese zwei Werte durch Aktivieren der rechts daneben liegenden Kontrollkästchen und passe erneut durch einen Klick auf [Auto fit] die Funktion ein. $y=0.08x^2$ bedeutet, dass beim Kreis der Flächeninhalt auch \ldots\ldOTS
2.1.3 Erforschung von Oberfläche und Volumen einer Kugel

Zusatzangebot:
Demofilm „So mache ich ein einfaches Grafikmodus-Modell zur Kugeluntersuchung“. Arbeitsblatt/Protokollvorlage. Start des Demofilms

a) Erstellen des Modells

Achtung: Denkbar ist auch, dass Unterstufenschüler das fertige Modell bekommen, und ohne die Formeln im Modell anzuschauen die Formeln mit dieser Aktivität erfordern.

b) Erstellen des ersten Diagramms „Kugel: O und V als Funktion vom r“
Auf der horizontalen Achse des Diagramms soll die unabhängige Variable r mit einer Skalierung von 0 bis 5, auf der ersten vertikalen Achse sollen Oberfl und V mit der Skalierung von 0 bis 300 dargestellt werden.

c) Erstellen des zweiten Diagramms „Kugelopeberfläche als Funktion des Volumens“
Auf der horizontalen Achse des Diagramms soll als unabhängige Variable V mit einer Skalierung von 0 bis 300, auf der vertikalen Achse die Variable Oberfl mit der Skalierung von 0 bis 300 dargestellt werden. Durch das Aktivieren des Kontrollkästchens bei „Keep the same ratio” wird für beide Achsen auch derselbe Maßstab eingestellt.

Um das Oberflächen-Volumen-Verhältnis der Kugel mit jenem beim Würfel vergleichen zu können, sollen in die Spalte C3 der Diagrammtabelle mit der Bezeichnung Oberfl_Würfel jene Zahlenwerte kommen, welche die Abhängigkeit der Oberfläche vom Volumen eines Würfels beschreiben. Dazu muss bei „Connection‘, ‘Formula‘ eingestellt werden und über den Formeleditor der Term 6*V^(2/3) eingegeben werden.

Für die Würfeloberfläche gilt nämlich: \(O=6*\sqrt[3]{V^2} = 6*V^{2/3} \)

d) Frage- bzw. Aufgabenstellungen:
(1) Zum ersten Diagramm:
• Bei welchem Radius ist die Maßzahl von Oberfläche und Volumen gleich groß?
• Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen Oberfl eine mathematische Funktion ein; verwende den dritten angebotenen Funktionstyp; drücke die Schaltfläche [Auto fit] und betrachte die Koeffizienten. Setze die Koeffizienten b und c exakt Null, fixiere sie mit einem Häckchen rechts daneben und drücke nochmals [Auto fit]. Der Koeffizient a ist ein ganzzahliges Vielfaches der Zahl \(\pi \). Die mathematische Funktionsgleichung heißt somit: \(f(x) = 12.57x^2 \), d.h.: \(O(r) = 4\pi*r^2 \).

(2) Auch die Abhängigkeit der Oberfläche vom Volumen soll im zweiten Diagramm noch untersucht werden.

Mit einem Blick auf das Diagramm kann folgende Behauptung bestätigt werden: Das Diagramm zeigt deutlich, dass bei gleichem Volumen die Oberfläche einer Kugel immer kleiner als jene des Würfels ist.

- Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen Oberfläche eine mathematische Funktion ein; wähle dazu als Typ eine allg. Potenzfunktion $f(x)=a*(x+b)^c+d$ aus, setze b und d exakt Null und bestimme a und c; a muss kleiner als 6 (beim Würfel ist a gleich 6) und c muss – aus Dimensionsgründen - exakt $2/3$ sein. Gib mit deinen Koeffizienten die Formel für die Abhängigkeit der Kugeloberfläche vom Volumen an. Es gilt: $O(V) = 4.83*V^{0.6667}$

2.1.4 Rechtecke bei konstantem Umfang

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung

Bei einem fix vorgegebenem Umfang (z.B. 20 m Zaun) kann man viele Rechtecke mit unterschiedlichem Flächeninhalt gestalten. Am meisten interessiert jenes Rechteck, welches den größten Flächeninhalt hat.

Mache ein Modell, welches bei Variation der Seitenlänge a unter Berücksichtigung des konstanten Umfanges die Flächeninhalte berechnet und stelle diese als Funktion von a dar. Die Seitenlänge a muss also als unabhängige Variable verwendet werden.

a) Erstellen des Modells

Lege ev. ein neues Projekt, auf jeden Fall eine neue Aktivität an. Öffne das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell:

Die Berechnungsformeln werden spätestens in der ersten Klasse des Gymnasiums gelernt.

Als Schrittweite für a ist 0.1 brauchbar. Der Startwert für a Null darf sein (warum?), als höchster Wert für a (der „Stoppwert“) macht nur 10 Sinn, falls der Umfang mit 20m festgelegt ist.

b) Erstellen des Diagramms „Rechteckflächen bei fixem Umfang als Funktion von a“

Erste vertikale Achse: Fläche mit der Skalierung von 0 bis 50; rot zweite vertikale Achse: b mit der Skalierung von 0 bis 10; grün
c) Erstelle eine unabhängige Tabelle „Table 1“
Diese soll die Variablen \(a, b, \text{ Umfang}\) und \(\text{Fläche}\) enthalten. Falls man in die Diagrammtabelle die Spalte Umfang einfügt, hat man das Problem, dass dann auch eine konstante Funktion für den Umfang im Diagramm sichtbar wird; stellt man diese Spalte dann auf ’invisible’, so wird diese auch in der Diagrammtabelle nicht mehr angezeigt.

d) Frage- bzw. Aufgabenstellungen:
- Ermittle im Scan-Modus (Diagramm-Kontextmenü) jene Seitenlängen, bei denen der Flächeninhalt maximal ist; gib die Seitenlängen \(a\) und \(b\) sowie \(A_{\text{max}}\) an.
- Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen \(\text{Fläche}\) eine mathematische Funktion ein; verwende den dritten angebotenen Funktionstyp (Polynomfunktion 2. Ordnung), drücke die Schaltfläche \([\text{Auto fit}]\) und betrachte die Koeffizienten. Setze den Koeffizienten \(c\) exakt Null, fixiere ihn mit einem Häckchen rechts daneben und drücke nochmals \([\text{Auto fit}]\). Die eingepasste Funktionsgleichung heißt somit: \(f(x) = -1 \times x^2 + 10 \times x\), d.h.: Fläche = \(-a^2 + (U/2)\times a\). Verifiziere das durch eine einfache Rechnung:

Das Quadrat ist jenes Rechteck, das unter allen Rechtecken mit fixem Umfang die größte Fläche hat.

2.1.5 Rechtecke bei konstantem Flächeninhalt
Zusatzangebot:
Arbeitsblatt/Protokollvorlage; Protokoll.
Kurzbeschreibung der Aufgabenstellung
Bei einem fix vorgegebenem Flächeninhalt (z.B. 9 \(\text{m}^2\)) kann man viele Rechtecke mit unterschiedlichen Seitenlängen und unterschiedlichem Umfang gestalten. Am meisten interessiert hier jenes Rechteck, welches den kleinsten Umfang hat.

Mache ein Modell, welches bei Variation der Seitenlänge \(a\) unter Berücksichtigung der konstanten Fläche die Größen des Umfanges berechnet und stelle den Umfang als Funktion von \(a\) dar. Die Seitenlänge \(a\) muss also als unabhängige Variable verwendet werden.

a) Erstellen des Modells
Öffne in einer neuen Aktivität das Modelfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell:

Die Definitionen für die Variablen \(b\) und \(\text{Umfang}\) sind klar. Als Schrittweite für \(a\) ist 0.1 brauchbar. Der Startwert für \(a\) darf nicht Null sein (warum? verwende z.B.: 0.2), als Stoppwert passt 10.

b) Erstellen des Diagramms „Rechteckumfang bei fixer Fläche als Funktion von \(a\)“
c) Erstelle eine unabhängige Tabelle „Table 2“

Diese soll die Variablen a, b, Umfang und Fläche enthalten. Falls man in die Diagrammtabelle die Spalte Fläche einfügt, hat man das Problem, dass dann auch eine konstante Funktion für die Fläche im Diagramm sichtbar wird; stellt man diese zusätzliche Spalte dann auf 'invisible', so wird sie auch in der Diagrammtabelle nicht mehr angezeigt.

d) Frage- bzw. Aufgabenstellungen:

- Ermittle im Scan-Modus (Diagramm-Kontextmenü) jene Seitenlängen, bei denen der Umfang minimal ist. Das Rechteck mit kleinstem Umfang bei vorgegebener Fläche ist offensichtlich ein Quadrat.
- Da die Anzahl der angebotenen Funktionstypen auch in Coach6 begrenzt ist, können wir in den Datengraphen des Umfangs keine mathematische Funktion einpassen.
 Stelle rechnerisch für das Rechteck bei fixem Flächeninhalt den Umfang als Funktion der Seitenlänge a dar. Den Flächeninhalt A nennen die Mathematiker dabei Formvariable und kann bei den Umformungen wie eine Konstante bzw. Zahl behandelt werden. Das Ergebnis der Umformung ist:
 \[U(a) = 2*a + 2*A/a \] für \(A = 9 \text{m}^2 \) heißt das: \(U(a) = 2*a + 18/a \). \(U(a) \) ist also eine Kombination einer homogenen linearen Funktion \(y = k*x \); erster Teil von \(U(a) \) und der „reziproken“ Funktion \(y = c / x \); zweiter Teil von \(U(a) \). Nun stellt sich die Frage, in welchen Bereichen \(U(a) \) von der linearen bzw. von der „reziproken“ Teil-Funktion (hauptsächlich) bestimmt wird. Ein Blick auf den Graphen der Variablen Umfang gibt darüber Auskunft.
 Stelle zuletzt noch die beiden oben berechneten Teil-Funktionen im Diagramm auf der ersten vertikalen Achse (Skalierung von 0 bis 50) dar, indem du in die Diagrammtabelle in den Spalten C4 und C5 die Funktionsterme \(2*a \) bzw. \(2*A/a \) eingibst. Wenn wir in der Diagrammtabelle mit der Variablen Fläche rechnen wollen, muss diese Variable auch einer Spalte, z.B. der Spalte C6, zugeordnet worden sein. Damit dann im Diagramm kein Flächen-Graph gezeichnet wird, stellen wir die Spalte C6 auf „invisible“. Die Graphen der beiden Teil-Funktionen sollen in dünnen blauen Linien ins Diagramm gezeichnet werden. Dass sich die Umfangsfunktion additiv aus diesen Teil-Funktionen zusammensetzt, ist leicht zu erkennen.

Das Quadrat ist jenes Rechteck, das unter allen Rechtecken mit fixer Fläche den kleinsten Umfang hat.
2.1.6 Minimale Oberfläche eines quadratischen Quaders bei fixem Volumen

Zusatzangebot:
Demofilm „So importiere ich einen Coach6-Graphen“, Arbeitsblatt/Protokollvorlage, Protokoll. Start des Demofilms

Kurzbeschreibung der Aufgabenstellung:
Einen quadratischen Quader mit fix vorgegebenem Volumen (z.B. 500 m³; Volumen eines Hauses) kann man mit unterschiedlichen Grundkanten und Höhen gestalten, wobei sich die Oberfläche dadurch verändert. Am meisten interessiert hier jener Quader, welcher die kleinste Oberfläche hat. Diese zunächst theoretische Fragestellung ist auch etwa im Wohnungsbau interessant, da die Energieverluste durch Transmission bei Gebäuden über ihre Gebäudehüllfläche = Oberfläche erfolgen.

Mache ein Modell, welches unter Berücksichtigung des konstanten Volumens bei Variation des Verhältnisfaktors \(f_{h_zu_a} \) zwischen Höhe und Grundkante die Größen der Oberfläche berechnet und stelle schließlich die Oberfläche als Funktion dieses Verhältnisfaktors \(f_{h_zu_a} \) dar. Dieser Verhältnisfaktor muss also als unabhängige Variable verwendet werden.

a) Erstellen des Modells
Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabh. Variable \(f_{h_zu_a} \) soll die Werte von 0.1 bis 2 durchlaufen, eine brauchbare Schrittweite ist 0.01. Null darf dieser Faktor aber wegen der Berechnung von \(a \) (siehe unten) nie sein.

Zu den Berechnungsformeln:
\[V = a^2 \cdot h, \quad f = \frac{h}{a}, \quad h = a \cdot f, \quad d.h.: \quad V = a^2 \cdot f \cdot a = f \cdot a^3; \quad a = \left(\frac{V}{f}\right)^{1/3}. \]
Die Quaderoberfläche ist gleich der doppelten Grundfläche \(G \) vermehrt um die Mantelfläche \(M (=4 \cdot a \cdot h) \).

b) Erstellen des Diagramms „Quadrat. Quader mit minimaler Oberfläche“
horizontale Achse: unabhängige Variable \(f_{h_zu_a} \) mit Skalierung von 0 bis 2, erste vertikale Achse: \(Oberfl \) mit der Skalierung von 200 bis 800; rot

c) Erstelle eine unabhängige Tabelle „Table 1“
Diese soll den Zeilenindex (Kontrollkästchen „show row index“ aktivieren) anzeigen und die Variablen \(f_{h_zu_a}, Oberfl, a \) und \(h \) enthalten. Bei der Variablen \(Oberfl \) soll die Zahl der Dezimalstellen auf 3 oder 4 erhöht werden, damit man das Minimum besser feststellen kann.

Falls man in die Diagrammtabelle zusätzliche Spalten einfügen wollte, hat man das Problem, dass dann deren Werte auch als Graphen im Diagramm sichtbar werden;
stellt man diese zusätzlichen Spalten auf ',invisible', so werden diese auch in der Diagrammtabelle nicht mehr angezeigt.

d) Frage- bzw. Aufgabenstellungen:

- Ermittle im ',Scan'-Modus (Diagramm-Kontextmenü) jenen Faktor zwischen Höhe und Grundkante, bei dem die Oberfläche minimal ist, und interpretiere die Zahlenwerte.

Unter allen quadratischen Quadern mit vorgegebenem Volumen ist der Würfel jener mit minimaler Oberfläche.

Nachsatz bzw. Ausblick:

Moderne Einfamilienhäuser im energie- und umweltbewussten Vorarlberg haben etwa ein Bruttovolumen von 500m³. Trotzdem sind diese Gebäude keine Würfel mit einer Kantenlänge von etwa 8m, wie es unser optimiertes Ergebnis verlangen würde. Dieser Würfel wäre fast 2 m zu hoch, weil ein Geschoss brutto etwa 3m hoch ist. Kleinere Würfel böten zu wenig Wohnfläche. Wenn man nun berücksichtigt, dass man gegen den Keller oder gegen das Erdreich um 50% geringere Wärmeverluste hat als gegen die Außenluft, dann erreicht dieser Faktor f_h zu a einen Wert von 0.75, was bedeutet, dass bei diesem optimierten Quader die Grundkante etwa 8,8m und die Höhe 6,5m hätte. Wenn man nun auch noch in Rechnung stellt, dass die oberste Geschossdecke üblicherweise den besten Wärmeschutz hat und deshalb ruhig ein bisschen vergrößert werden darf auf Kosten der Wände, ist ein Quader mit einer ca. 9m langen Grundkante und einer ca. 6m langen Höhe eine optimierte Gebäudeform. Statt eines Flachdaches dürfen „Andersgläubige“ ruhig noch ein Satteldach oder Walmdach daraufsetzen.

2.1.7 Stammfunktion der konstanten und linearen Funktion

Zusatzangebot:

Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

\(F(x) \) ist eine Stammfunktion einer Funktion \(f(x) \), wenn die Ableitung von \(F(x) \) gleich \(f(x) \) ist, kurz wenn gilt: \(F'(x) = f(x) \). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man \(F(x₀) \), den Funktionswert einer Stammfunktion an der Stelle \(x₀ \), als Summe aller Flächenstücke, die zwischen dem Graphen von \(f(x) \) und der x-Achse bis zu dieser Stelle \(x₀ \) liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die Stammfunktion gefunden und untersucht werden.
a) Erstellen des Modells

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die *unabhängige Variable* \(x \) soll die Werte von -5 bis 5 durchlaufen, eine brauchbare *Schrittweite* ist 0.01. Damit das Variablensymbol für \(x \) auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible:“ aktiviert sein.

Für eine Gerade gilt: \(y = k \cdot x + d \)

Obwohl wir für \(k \) und \(d \) Konstanten-Symbole verwenden, kann man deren Werte variieren.

In der „normalen“ Variablen (auxiliary variable) \(f_x \) sollen die Funktionswerte der linearen Funktion berechnet werden. In der Bestandsvariablen (state variable) \(Sum \) werden die senkrechten Flächenstreifen zwischen der Geraden und der \(x \)-Achse aufsummiert. Der Anfangswert von \(Sum \) soll dabei Null sein. Die Fläche eines Streifens ist jeweils der Funktionswert der Geraden an der aktuellen Stelle, multipliziert mit der Breite des Streifens, die gleich der Schrittweite \(dx \) ist. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Funktionswert der Geraden dort negativ ist. Der *Flow*, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von \(Sum \) dazu gezählt werden. Obwohl hier zwischen dem aktuellen Wert von \(Sum \) und der Variablen \(StammF_x \) kein Unterschied besteht, wollen wir hier schon eine eigene Variable \(StammF_x \) einsetzen.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von \(f_x \) zum Inflow von \(Sum \) gezeichnet ist, ist dort schon alles erledigt. Der Flow ist eine Änderungsrate, die angibt, um wie viel sich die Bestandsgröße bezüglich der Einheit der unabhängigen Variablen verändert. Die wirkliche Änderung pro Durchrechnungsschritt ist dann das Produkt aus Flow und Schrittweite der unabhängigen Variablen \((f_x \cdot dx) \); das ist die Fläche eines Streifens).

Das Aufsummieren dieser Größe im Textmodus eines Modells würde man mit folgender Befehlszeile machen:

\[
Sum := Sum + dA, \text{ wobei davor } dA = f_x \cdot dx \text{ stehen müsste; }\]

oder in einer einzigen Zeile: \(Sum := Sum + f_x \cdot dx \).

b) Erstellen des Diagramms „Gerade und ihre Stammfunktion“

horizontale Achse: unabhängige Variable \(x \) mit Skalierung von -5 bis 5,
erste vertikale Achse: Variable \(f_x \) mit der Skalierung von -50 bis +50; grün,
ebenfalls erste vert. Achse: Variable \(StammF_x \), Skalierung von -50 bis +50; rot

c) Erstelle eine unabhängige Tabelle „Table 1“

Zur Analyse ist immer auch eine unabhängige Tabelle praktisch. Diese soll den Zeilenindex (Kontrollkästchen „show row index“ aktivieren) anzeigen und die Variablen
x, f_x und StammF_x enthalten. Bei den Spalten mit den Funktionswerten erhöhen wir die Anzahl der Dezimalstellen auf 4.

Ev. könnte man auch die Größe der Flächenstreifen dA anzeigen lassen, welche gleich f_x*0.01 ist. Auf das ',Step interval' dx hat man als Variable im Grafikmodus offensichtlich innerhalb der Tabellen keinen Zugriff.

d) Frage- bzw. Aufgabenstellungen:

(1) Zur konstanten Funktion: y = d; k = 0.
- Wählen Sie k = 0 und d = 5, d.h. f(x) = 5. Starten Sie die Durchrechnung des Modells.
 Betrachten Sie die Graphen der Funktion und der ermittelten Stammfunktion. Als Gerade-Experte sieht man sofort die Gleichung F(x) = 5*x+25; falls man weniger geübt ist, könnte man den Graphen der Stammfunktion mit ,Analyse/Function fit' analysieren und kommt auch schnell auf diese Gleichung. Beachten Sie, dass z.B. F(x) = 5*x und F(x) = 5*x – 19 auch Stammfunktionen von f(x) = 5 sind. Machen Sie analoges für f(x) = -2 ➔ F(x) = -2*x + c, wobei c eine frei wählbare reelle Zahl sein kann. Allgemein gilt: f(x) = d ➔ F(x) = d*x + c. Die Konstante c bezeichnet man als Integrationskonstante.

(2) Zur homogenen linearen Funktion: y = k*x; d = 0, k ≠ 0.
- Wählen Sie k = 3 und d = 0, d.h. f(x) = 3*x. Starten Sie die Durchrechnung des Modells.
 Betrachten Sie die Graphen der Funktion und der ermittelten Stammfunktion. Die Stammfunktion könnte eine Parabel 2. Ordnung sein. Der nach oben offene Graph von F(x) hat anscheinend seinen Tiefpunkt/Scheitelpunkt genau dort, wo die ursprüngliche Funktion f(x) seine Nullstelle hat. Mit ,Analyse/Function fit' analysieren Sie den Graphen von StammF_x, indem Sie eine Polynomfunktion 2. Ordnung, den dritten angebotenen Funktionstyp, einpassen. Nach dem exakten Nullsetzen und Fixieren des zweiten Koeffizienten liefert [Auto fit] die exakten Koeffizienten der Stammfunktion: F(x) = 1,5*x² - 37,6; die additive Konstante ist uninteressant; es gilt: F(x) = 1.5*x² + c = 3/2*x² + c. Machen Sie analoges für f(x) = -1*x ➔ F(x) = -0,5*x² + c = -½*x² + c. wobei c eine frei wählbare reelle Zahl sein kann. Achtung: Hier ist die Parabel der Stammfunktion nach unten offen und ihr Scheitelpunkt ist ein Hochpunkt. Allgemein gilt: f(x) = a*x ➔ F(x) = a/2*x²+c.

(3) Zur inhomogenen linearen Funktion: y = k*x + d
- Wählen Sie k = -1,5=-3/2 und d = 4, d.h. f(x) = -3/2*x + d. Starten Sie die Durchrechnung des Modells.
 Betrachten Sie die Graphen der Funktion und der ermittelten Stammfunktion. Die Stammfunktion ist immer noch eine Parabel 2. Ordnung. Der nach unten offene Graph von F(x) hat anscheinend immer noch seinen Hochpunkt=Scheitelpunkt genau dort, wo die ursprüngliche Funktion f(x) seine Nullstelle hat. Ein Scan bestätigt diese Vermutung. Mit ,Analyse/Function fit' analysieren Sie den Graphen von StammF_x, indem Sie die Polynomfunktion 2. Ordnung, den dritten angebotenen Funktionstyp, einpassen. Der erste Koeffizient ist -0,75 = -¾ = -3/2/2, für den zweiten wird 4.01 angezeigt; diesen nehmen wir als ganzzahlig 4 an; der dritte Koeffizient ist das konstante Glied, das bei der Stammfunktion frei wählbar ist. Und somit heißt die Stammfunktion wie folgt: F(x) = ¾*x² + 4*x + c. Allg. gilt: f(x) = a*x+b ➔ F(x) = a/2*x²+b*x+c.
2.1.8 Stammfunktion der Cosinusfunktion

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:
F(x) ist eine Stammfunktion einer Funktion f(x), wenn die Ableitung von F(x) wieder gleich f(x) ist, kurz wenn gilt: F'(x) = f(x). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man F(x₀), den Funktionswert einer Stammfunktion an der Stelle x₀, als Summe aller Flächenstücke, die zwischen dem Graphen von f(x) und der x-Achse bis zu dieser Stelle x₀ liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant.

Mache ein Modell, mit dem man den Graphen der Cosinusfunktion im Intervall [0;10] zeichnen kann. Zusätzlich sollen die Flächenstreifen beginnend bei x=0 schrittweise aufsummiert werden. Die aktuelle Zwischensumme dieser Flächenstreifen ist der Funktionswert der Stammfunktion, welche ebenfalls im Diagramm dargestellt werden soll.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die Stammfunktion gefunden und untersucht werden.

a) Erstellen des Modells
Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable x soll die Werte von 0 bis 10 durchlaufen, eine brauchbare Schrittweite ist 0.01. Damit das Variablensymbol für x auch angezeigt wird, muss in seinem Eigenschaftenfenster unten ’Symbol visible..’ aktiviert sein.

Die Modellvariable Cosinus_f_x wird mit Hilfe der Mathematischen Funktion des Formeleditors definiert. Wir ändern die Standardeinstellung Radiant für das Argument der Winkelfunktion nicht.

In der Bestandsvariablen (state variable) Sum werden die senkrechten Flächenstreifen zwischen dem Graphen der Cosinusfunktion und der x-Achse aufsummiert. Der Anfangswert von Sum soll dabei Null gesetzt sein. Die Fläche eines Streifens ist jeweils der Funktionswert von Cos(x) an der aktuellen Stelle, multipliziert mit der Breite des Streifens, die gleich der Schrittweite dx ist. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Wert der Funktion f(x) dort negativ ist. Der Flow, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von Sum dazugezählt werden. Obwohl hier zwischen dem aktuellen Wert von Sum und der Variablen StammF_x kein Unterschied besteht, wollen wir eine eigene Variable StammF_x einsetzen.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von Cosinus_f_x zum
Inflow von Sum gezeichnet ist, ist dort schon alles erledigt. Es handelt sich bei einem Flow um eine Änderungsrate, die immer auf die Einheit der unabhängigen Variablen bezogen ist. Die eigentliche Änderung pro Durchrechnungsschritt ist das Produkt aus Flow und 'Step interval': Änderungsrate = Inflow = Cosinus_f_x; Änderung ist dann Cosinus_f_x*dx pro Durchrechnungslauf.

Hier ist das Modell zu dieser Aufgabe im Textmodus abgebildet. Rechts der einfachen Hochkommas stehen jeweils Kommentare.

Das Aufsummieren der Flächenlemente erfolgt in der dritten Programmzeile mit Sum:=Sum+dA im linken Teil des Modellfensters.

b) Erstellen des Diagramms „Cos(x) und Stammfunktion“

horizontale Achse: unabhängige Variable x mit Skalierung von 0 bis 10.
Auf der ersten vertikalen Achse werden mit der selben Skalierung (von -2 bis +2) folgende drei Variablen angezeigt: Variable Cosinus_f_x grün, die Variable Sum blau und die Variable StammF_x rot.

c) Erstelle eine unabhängige Tabelle „Table 1“

Zur Analyse ist immer auch eine unabhängige Tabelle praktisch. Diese soll den Zeilenindex (Kontrollkästchen ‘show row index’ aktivieren) anzeigen und die Variablen x, Cosinus_f_x, dA_nach_dx und StammF_x enthalten. Bei den Spalten mit den Funktionswerten erhöhen wir die Anzahl der Dezimalstellen auf 3.

d) Frage- bzw. Aufgabenstellungen:

Als Funktionen-Experte erkennt man sofort, dass die Stammfunktion der Cosinusfunktion die Sinusfunktion ist. f(x) = Cos(x) → F(x) = Sin(x) + c

Aber auch mit Coach6 kann der Graph von StammF_x identifiziert werden. Wenn man mit ’Analyse/Function fit‘ eine mathematische Funktion in diesen Datengraphen einpasst und dabei als Funktionstyp f(x)=a*Sin(b*x+c)+d auswählt, der in der Liste als letzter von Coach6 angeboten wird. Man sieht sofort nach dem Klick auf [Auto fit], dass der Graph von StammF_x eine Sinusfunktion darstellt (die beiden ersten Koeffizienten sind exakt 1, die restlichen haben (fast) die Werte Null).

Beim Blick auf die Graphen im Diagramm sieht man, dass die Cosinusfunktion und die Sinusfunktion Graphen haben, welche „fast identisch“ sind. Wenn man den einen Graphen der beiden Funktionen entsprechend weit in x-Richtung verschiebt, erhält man den Graphen der anderen Winkelfunktion.

Im Scan-Modus kann ermittelt werden, wie groß diese Verschiebung der Graphen in x-Richtung ist. Der so erhaltene Wert 1,57 hat wie das Argument x der Winkelfunktion dieselbe Dimension, nämlich Radiant. 1,57 ist die Hälfte von 3,14, welches be-
kanntlich der Wert von π ist. Die Graphen von $\cos(x)$ und $\sin(x)$ sind also um $\pi/2$ zu einander horizontal verschoben. $\sin(x) = \cos(x - \pi/2)$ oder $\cos(x) = \sin(x + \pi/2)$.

Außerdem erkennt man mit und ohne Scannen leicht, dass bei den Nullstellen der einen Funktion Extremstellen der anderen sind.

2.1.9 Stammfunktion der Sinusfunktion

Zusatzangebot:
Arbeitsblatt/Protokollvorlage, Protokoll.

Kurzbeschreibung der Aufgabenstellung:

$F(x)$ ist eine Stammfunktion einer Funktion $f(x)$, wenn die Ableitung von $F(x)$ wieder gleich $f(x)$ ist, kurz wenn gilt: $F'(x) = f(x)$. Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man $F(x_0)$, den Funktionswert einer Stammfunktion an der Stelle x_0, als Summe aller Flächenstücke, die zwischen dem Graphen von $f(x)$ und der x-Achse bis zu dieser Stelle x_0 liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant. Man könnte auch sagen, dass der Anfangswert beim Aufsummieren nicht zwingend Null sein muss.

Mache ein Modell, mit dem man den Graphen der **Sinusfunktion** im Intervall $[0;10]$ zeichnen kann. Zusätzlich sollen die Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse beginnend bei $x=0$ schrittweise aufsummiert werden. Die aktuelle Zwischensumme dieser Flächenstreifen ist der Funktionswert der Stammfunktion, welche ebenfalls im Diagramm dargestellt werden soll.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die die gefundene Stammfunktion ermittelt werden.

a) Erstellen des Modells

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable x soll die Werte von 0 bis 10 durchlaufen, eine brauchbare Schrittweite ist 0.01. Damit das Variablensymbol für x auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible..“ aktiviert sein. Die Modellvariable Sinus_f_x wird mit Hilfe der Mathematischen Funktion $\sin(x)$ im Formeleditor definiert. Wir verändern die Standardeinstellung Radiant für das Argument der Winkelfunktion nicht.

In der Bestandsvariablen (state variable) **Sum** werden die senkrechten Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse aufsummiert. Den Anfangswert von **Sum** setzen wir dabei Null, was aber nicht zwangsläufig so sein muss. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Funktionswert von $\sin(x)$ dort negativ ist. Der **Flow**, welcher in die Bestandsgröße hineinzeigt, sorgt dafür,
dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von Sum dazugezählt werden. Der aktuelle Wert von Sum wird hier nicht der Funktionswert der Stammfunktion sein; deshalb müssen wir eine eigene Variable $StammF_x$ einsetzen. Auf die Definition dieser Variablen verzichten wir aber vorerst. Deshalb wird im Innern des Variablensymbols ein Fragezeichen angezeigt.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von $Sinus_f_x$ zum Inflow von Sum gezeichnet ist, ist dort schon alles erledigt. Es handelt sich bei einem Flow um eine Änderungsrate, die immer auf die Einheit der unabhängigen Variablen bezogen ist; die Änderungsrate ist $Sinus_f_x$, die Änderung pro Durchrechnungsschritt ist $Sinus_f_x*\Delta x$, das die Fläche des Streifens zwischen $Sinus_f_x$ und x-Achse ist.

b) Erstellen des Diagramms „Sin(x) und Stammfunktion“

c) Erstelle eine unabhängige Tabelle „Table 1“
Zur Analyse ist immer auch eine unabhängige Tabelle praktisch. Diese soll den Zeilenindex (Kontrollkästchen ’show row index’ aktivieren) anzeigen und die Variablen $Sinus_f_x$, $Flow_1$, $Streifenfl$ und Sum enthalten.

Auf die Anzeige von $StammF_x$ müssen wir vorläufig auch verzichten.

Die Spalte C3 mit der Bezeichnung (Quantity) $Streifenfl$ wird über eine Formel definiert (bei ’Connection’ ’Formula’ auswählen); die im Formeleditor einzugebende Formel heißt $Flow_1*0.01$, wenn die Breite der Flächenstreifen wie oben empfohlen wirklich 0.01 ist. Bei den ersten zwei Spalten erhöhen wir die Anzahl der Dezimalstellen auf 4, bei allen weiteren auf 6.

d) Frage- bzw. Aufgabenstellungen:

Die Durchrechnung des Modells zeigt einen blauen Sum-Graphen, der zumindest sehr ähnlich zu den Graphen der Sinus- und Cosinusfunktion ist. Sein Wertebereich ist aber [0;2] und nicht [-1;1]. Da Stammfunktionen ohnehin nur bis auf additive Konstanten definiert sind, addieren wir zu der Sum-Variablen einfach die Konstante -1, was bewirkt, dass wir eine Stammfunktion $StammF_x$ bekommen, deren Graph parallel zum Sum-Graphen verläuft und deren Wertebereich [-1;1] ist, wie das für jede Sinus- und Cosinusfunktion der Fall sein muss.
Vor der Identifizierung der neu gewonnenen Stammfunktion wollen wir im Modellfenster, im Diagramm und in der Tabelle jeweils eine Ergänzung machen: Im Modellfenster definieren wir die Variable StammF_x mit der Formel **Sum + (-1)** oder kürzer mit **Sum – 1**. Im Diagramm ordnen wir der nächsten freien Spalte der Diagrammtabelle die Variable **StammF_x** mit einer Skalierung von -2 bis +2 zu. In der unabhängigen Tabelle zeigen wir in der nächsten freien Spalte die Variable **StammF_x** an und stellen die Anzahl der Dezimalstellen auf 6.

Welche Funktion wird nun durch den roten Graphen repräsentiert?

Als Funktionen-Experte erkennt man sofort, dass der rote Graph der Stammfunktion eine an der x-Achse geschlagelte Cosinusfunktion ist.

\[F(x) = -\cos(x) + c, \text{ wenn } f(x) = \sin(x) \]

Die Stammfunktion der Sinusfunktion ist die negative Cosinusfunktion!!

Aber auch mit Coach6 kann der Graph von **StammF_x** „identifiziert“ werden. Wenn man mit „Analyse/Function fit“ eine mathematische Funktion in diesen Datengra phen einpasst und dabei als Funktionstyp \(f(x)=a\sin(b\cdot x+c)+d \) auswählt, der in der Liste als letzter von Coach6 angeboten wird, sieht man sofort nach dem Klick auf
[Auto fit], dass der Graph von StammF_x eine Sinusfunktion darstellt. Nun gilt es noch zu zeigen, dass diese angezeigte Sinusfunktion auch eine Cosinusfunktion, d.h. gleich minus Cos(x) ist. Wie die Koeffizienten des Function-fit-Fensters zeigen, gilt folgendes:

\[\text{StammF}_x = F(x) = 1 \cdot \sin(1 \cdot x - 1.57) = \sin(x - \pi/2) = -\cos(x). \]

Die Richtigkeit des letzten Gleichheitszeichens kann mit einfachen Überlegungen am Einheitskreis nachgewiesen werden, wenn man etwa wie folgt umformt:

\[\sin(x - \pi/2) = -\cos(x) \iff \cos(x) = -\sin(x - \pi/2) = \sin(\pi/2 - x) = \sin(90° - x) \iff \]

\[\iff \cos(\alpha) = \sin(90° - \alpha) \text{ q.e.d.} \]

Dass StammF_x gleich – Cos(x) ist, könnte man auch nachweisen, wenn man den Graphen von – Cosx im Diagramm zusätzlich anzeigen ließe. Die beiden Graphen würden exakt übereinander liegen.
2.2 Aufgaben aus der Physik

Die Anwendung der Modellbildung und Simulation auf Fragestellungen der Physik scheint mir für den Unterricht besonders interessant zu sein. Es ist auch eine optimale Ergänzung zum selbsttätigen Experimentieren und Messen, wie man das auch bestens mit Coach6 im Laborunterricht oder in experimentellen Übungen macht.

Da Modellbildung und Simulation aber ohne zusätzliche Hardware allein mit der Coach6-Software betrieben werden kann, steht bei nur geringem finanziellem Aufwand dem Modelling mit Coach6 in Notebook-Klassen, in einem Netzwerksaal und im Physiksaal mit PC und Beamer nichts im Wege.

Auch im Fach Physik kann das Modeling einfach für die graphische Darstellung wichtiger Zusammenhänge wie etwa der Abhängigkeit des Vergrößerungsfaktors beim relativistischen Massenzuwachs eingesetzt werden. Beim „richtigen“ Modeling bietet sich zusätzlich aber die Möglichkeit an, einzelne Parameter zu variieren und deren Auswirkungen zu studieren.

Für den Einstieg in dieses Metier sind Aufgabenstellungen der Kinematik bestens geeignet. Die Einbeziehung wirkender Kräfte, im speziellen verschiedener Reibungskräfte, erlaubt die Behandlung realer Bewegungen und Schwingungen. Auch zur Wärmelehre, zur Elektrizitätslehre, zur Radioaktivität und zur Relativitätstheorie lassen sich Fragestellungen mit diesen Methoden behandeln.

Folgende Themen werden nachfolgend im Detail aufbereitet:

- Der freie Fall
- Der horizontale Wurf
- Der senkrechte Wurf ohne und mit Luftreibung
- Der schiefe Wurf
- Brems- und Anhalteweg
- Das horizontale Federpendel
- Das vertikale Federpendel
- Das Fadenpendel
- Satellitenbahnen als Funktion von Höhe und Geschwindigkeit
- Die Bahn der ISS
- Das Zerfallsgesetz
- Das prozentuelle Wachstum
- Die radioaktive Zerfallskette
- Die Abkühlung einer heißen Tasse Kaffee
- Die Entladung eines Kondensators
- Die Aufladung eines Kondensators
- Das Zwillingsparadoxon
2.2.1 Der freie Fall

Zusatzangebote:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Aus einer Höhe Abwurf_h fällt ein Gegenstand frei nach unten und prallt auf den Boden. Mache ein Modell und zwei Diagramme, ein erstes, in dem y(t) und v(t) dargestellt ist, und ein zweites, welches die Geschwindigkeit v als Funktion des Fallweges zeigt. Zusätzlich wäre auch ein Diagramm interessant, das die Fallzeit als Funktion des Fallweges zeigt.

In diesem einfachen Beispiel soll bei der Modellerstellung im Speziellen der Umgang mit den In- und Outflows geübt werden, bei den Diagrammen das Rechnen in der Diagrammtabelle.

a) Erstellen des Modells

Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die unabh. Variable ist die Zeit t. Sie soll vorläufig mit einer Schrittweite von 0.01 von 0 bis 10 laufen.

Manchmal ist es vorteilhaft, wenn man bei den Richtungen und Vorzeichen physikalischer Größen konsequenter ist. Dabei könnte man das Prinzip verfolgen, dass nach unten gerichtete Größen negative und nach oben gerichtete positive Werte haben sollen. Dieses Prinzip könnte bei unserem Beispiel zu folgendem Modell führen:

Die Anfangsgeschwindigkeit ist Null; während des Fallens werden die Geschwindigkeiten immer „negativer“ d.h. mathematisch kleiner, deshalb ist hier bei v ein Outflow installiert. Die Zahl bei v zeigt, dass die Geschwindigkeit wirklich negativ wird; es ist jener Wert, dem das Modell bei der letzten Durchrechnung für t = 10s ermittelt hat.
Da beim Fallen auch die y-Koordinate des Gegenstandes kleiner wird, ist der Outflow bei der Bestandsgröße y ebenfalls „logisch“. Die dort angezeigte Zahl 540,45 m verrät aber, dass da etwas nicht stimmt, denn der Gegenstand steigt offensichtlich in die Höhe auf.

Dieses Problem kann dadurch behoben werden, dass der Outflow von y ein negatives Vorzeichen bekommt und somit gleich \(-v\) wird. Da nach dieser Änderung dann die Werte der Variablen y auch kontinuierlich kleiner werden, passt jetzt alles. Wir brechen noch im Dialog der Modeleinstellungen die Exekution des Modells durch die Bedingung y\(\leq 0\) ab.

In einer weiteren Version – es geht hier um das Verstehen der Wirkung verschiedener Flows – könnte man die Konstante \(g\) negativ definieren. Dann bekommt die Geschwindigkeit \(v\) wieder einen Inflow und der Outflow von y muss wie in Version 2 gestaltet werden.

b) Erstellen der Diagramme

Die folgenden Diagramme gelten für die Version 1 dieses Modells.

Diagramm: „\(y(t)\) und \(v(t)\)“

horizontale Achse: unabhängige Variable \(t\) mit der Skalierung von 0 bis 5
erste vertikale Achse: Variable \(y\) mit der Skalierung von 0 bis 100; blau
zweite vertikale Achse: Variable \(v\) mit der Skalierung von 0 bis 50; grün

Diagramm: „\(v\) (Fallweg)“

Der Fallweg muss zuerst noch aus der Variablen y und der Konstanten Abwurf_h in der Diagrammtabelle berechnet werden. Alle Daten, mit denen man in der Tabelle rechnen will, müssen zunächst einmal in der Tabelle präsent sein. Deshalb ordnen wir der Spalte C1 die Konstante Abwurf_h und der Spalte C2 die Variable y zu und stellen ihre Anzeige bei „Axis“ jeweils auf „invisible“. In der Spalte C3 berechnen wir dann den Fallweg (mit der Formel C1-C2 oder Abwurf_h-y) und ordnen diese Werte der horizontalen Achse zu. Also:

horizontale Achse: der berechnete Wert Fallweg mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable \(v\) mit einer Skalierung von 0 bis 50; rot

Diagramm „Fallzeit (Fallweg)“

Die unabhängige Diagrammvariable auf der horizontalen Achse ist hier der Fallweg. Da dieser schon in einer anderen Diagrammtabelle dieser Aktivität berechnet wurde, steht er in dieser Diagrammtabelle ebenfalls zur Auswahl zur Verfügung.

horizontale Achse: Fallweg mit Skalierung 0 bis 100
erste vertikale Achse: Variable \(t\) mit einer Skalierung von 0 bis 5; violett

c) Frage- bzw. Aufgabenstellungen:

- Die Fallzeit wird allein durch die Abwurfhöhe bestimmt. Eine Simulation der Abwurfhöhe für 30, 60 und 90m zeigt, dass die Fallzeit nicht linear von der Abwurfhöhe abhängt (die Fallzeiten sind etwa 2.5, 3.5 und 4.3 s).
Die Fallgeschwindigkeit nimmt zeitlich linear zu, in Abhängigkeit vom Fallweg ist dies aber gar nicht der Fall. Bei einer Fallhöhe von 100m braucht der Gegenstand für die ersten 10m des Weges etwa 1.4s und erzielt dabei eine Geschwindigkeitsänderung von 14.1m/s. Die letzten 10m legt er in 0.24s zurück und ändert dabei die Geschwindigkeit nur noch um 2,3m/s. Pro Sekunde ist die Geschwindigkeitsänderung aber immer 9.81m/s.

Wenn man das dritte Diagramm (Fallzeit als Funktion des Fallweges) betrachtet, liegt die Vermutung nahe, die Daten dieses Graphen durch eine Wurzelfunktion zu beschreiben. Das Einpassen einer allgemeinen Quadratwurzelfunktion \(f(x)=a\sqrt{b\cdot x+c}+d \) mit der Option 'Analyse/Function fit..' des Grafik-Kontextmenüs liefert die Koeffizienten \(a=0.45 \) und \(b=1 \), wenn man \(c \) und \(d \) exakt Null setzt. Offensichtlich gilt also:

\[
\text{Fallzeit in Sekunden} = 0.45\ \text{mal Quadratwurzel des Fallweges in m}
\]

Das Umformen von \(s=\frac{1}{2}gt^2 \) liefert für \(t = \sqrt{\frac{2s}{g}} = \sqrt{\frac{2}{g} \cdot s} = 0.4515\ \sqrt{s} \)

2.2.2 Der horizontale Wurf

Zusatzangebot:

Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Aus einer Höhe \(h \) wird ein Gegenstand mit der Geschwindigkeit \(v_{ox} \) abgeworfen. Mach ein Modell und die nötigen Diagramme, damit diese Bewegung bis ins Detail untersucht werden kann. Insbesondere sollen die Geschwindigkeiten \(v_x, v_y \) und \(v \) gegenüber der Zeit und die Wurfbahn dargestellt werden. Das räumliche Koordinatensystem habe seinen Ursprung auf dem Niveau des Aufprallortes.

a) Erstellen des Modells

Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die unabh. Variable \(t \) soll zunächst die Werte von 0 bis 10 durchlaufen, eine brauchbare Schrittweite ist 0.01.

Die Geschwindigkeit \(v_x \) (wähle z.B. einen Wert 10) ändert sich nicht; der Weg in x-Richtung nimmt zu, deshalb setzen wir bei der Variablen x einen Inflow ein. Die y-Koordinate nimmt ab, deshalb arbeiten wir dort mit einem Outflow. Der Anfangswert der Bestandsgröße \(v_y \) zeigt an, dass diese Geschwindigkeitskomponente beim Wurf größer wird. Zahlenwert und Dimension der Konstanten \(g \) holen wir uns aus der von Coach6 angebotenen Konstantenliste.

b) Erstellen der beiden Diagramme
Diagramm: „vx(t) vy(t) und v(t)“

horizontale Achse: unabhängige Variable t mit Skalierung von 0 bis 5
erste vertikale Achse: dieser sollen drei Größen mit derselben Skalierung von 0 bis 50 zugeordnet werden: die Variable vx violett, die Variable vy rot und grün der Betrag der Gesamtgeschwindigkeit v, welche zuerst aber mit der Formel \(\sqrt{vx^2+vy^2}\) in der Spalte C4 der Diagrammtabelle berechnet werden muss.

Diagramm: „y(x) Wurfbahn“

horizontale Achse: Variable x mit Skalierung von 0 bis 100
erste vertikale Achse: Variable y mit einer Skalierung 0 bis 80; blau

Damit die Wurfbahn unverzerrt dargestellt wird, muss im Dialog „Create/Edit diagram…“ das Kontrollkästchen „Keep the same ratio“ aktiviert werden.

c)Frage- bzw. Aufgabenstellungen:

- Bei der Betrachtung des Diagramms mit den Geschwindigkeiten wird deutlich, dass die Gesamtgeschwindigkeit v nach ein paar Sekunden fast nur noch von der Komponente vy bestimmt wird.

Interessant ist, dass in den ersten Sekunden diese Beschleunigung a von Null beginnend deutlich unter 9,81 m/s² bleibt, da in dieser Zeit der Erdbeschleunigungsvektor g vor allem die Bahn des geworfenen Gegenstandes krümmt und den Betrag der Geschwindigkeit noch nicht so stark erhöht. Je geringer der Winkel zwischen Geschwindigkeitsvektor und Erdbeschleunigungsvektor ist, desto näher kommt die hier angezeigte Beschleunigung a an den Zahlenwert der Erdbeschleunigung heran. Von einer Kreisbahn wissen wir, dass der Beschleunigungsvektor immer senkrecht auf den Geschwindigkeitsvektor steht; deshalb bewirkt er nur eine Richtungsänderung des Geschwindigkeitsvektors und lässt seinen Betrag unverändert.

2.2.3 Der senkrechte Wurf

Zusatzaufgaben:

Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

a) Erstellen des Modells
Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die Schwerebeschleunigung g verringert nach dem Abwurf die Geschwindigkeit v; deshalb hat v einen Outflow $= g$. Bei der y-Koordinate des geworfenen Gegenstandes verwenden wir einen Inflow $= v$, da y zuerst einmal größer werden soll.

Auch im Textmodus kann diese Aufgabe gelöst werden. Man sieht dort im Modellfenster jeweils alles außer der Anzahl der eingestellten Berechnungszyklen.

Coach6 übersetzt das Modell vom Grafikmodus in den Textmodus, wenn man auf das Symbol klickt.

Diese automatische Übersetzung ist aber etwas umständlicher formuliert und enthält zahlreiche Redundanzen, wie das Beispiel links deutlich zeigt. Die Übereinstimmung der entscheidenden Zeilen im selbst geschriebenen Textmodus-Modell und im übersetzten Modell ist aber trotzdem deutlich zu erkennen.

b) Erstellen der Diagramme
Da der Senkrechte Wurf eine geradlinige Bewegung ist, erstellen wir nur ein $y(t)$- und ein $v(t)$-Diagramm. Das $y(t)$-Diagramm ist dabei aber nicht die Wurfbahn!

Diagramm: „$y(t)$“
horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 10
erste vertikale Achse: Variable y mit einer Skalierung von 0 bis 50; blau

Diagramm: „$v(t)$“
horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 10
erste vertikale Achse: Variable v mit einer Skalierung von -40 bis +40; rot
c) Frage- bzw. Aufgabenstellungen:

(1) ohne Luftreibung:
Im Scan-Modus können für eine bestimmte Abwurfgeschwindigkeit Fragen nach der Aufprallgeschwindigkeit, der Steighöhe, der Steigzeit und der Fallzeit leicht beantwortet werden, sowohl wenn die Abwurfhöhe Abwurf_h gleich Null ist als auch wenn sie größer Null ist. Weil bei einem Abwurf über dem Nullniveau zusätzlich potenzielle Energie in kinetische Energie umgewandelt wird, ist dann die Aufprallgeschwindigkeit entsprechend größer als die Abwurfgeschwindigkeit.

(2) mit Luftreibung:

Für die Luftreibung gilt: \[F_{\text{reib}} = c_w \cdot A \cdot \rho \cdot \frac{v^2}{2} \]; Der \(c_w \)-Wert einer Kugel ist 0,5, die angestromte Fläche einer Kugel ist ihre Querschnittsfläche (nicht ihre Oberfläche), die Dichte \(\rho \) ist jene der Luft (\(\rho = 1.29 \text{ kg/m}^3 \)) und die Geschwindigkeit \(v \) ist die aktuelle Relativgeschwindigkeit zwischen Ball und Luft.

Ein Volleyball hat die Masse von 0,27 kg und einen Umfang von 67 cm, aus dem die Querschnittsfläche A berechnet werden muss.

Das erweiterte Modell sieht etwa so aus. In \(F_{\text{reib}} \) wird die Reibungskraft berechnet, daraus dann die Beschleunigung \(a_{\text{reib}} \).

Heikel ist nur die Berechnung der Gesamtbeschleunigung \(a \). Diese setzt sich nämlich nicht immer gleich zusammen. Wenn der Körper in die Höhe steigt \(v>0 \) ist, bewirken \(g \) und \(a_{\text{reib}} \) in gleicher Weise eine Verringerung der Geschwindigkeit \(v \) und müssen wegen des Outflows bei \(v \) positiv sein \(\Rightarrow a = g + a_{\text{reib}} \); wenn der Körper fällt, wirkt die Reibungskraft entgegengesetzt wie das Gewicht; deshalb müssen in diesem Fall \(g \) und \(a_{\text{reib}} \) ein entgegengesetztes Vorzeichen haben.

\[a = +g + (-a_{\text{reib}}) = g - a_{\text{reib}} \] heißen. Links sieht man das Eigenschaftenfenster der Variablen \(a \), wo die Definition mit der eben erläuterten Bedingung nach der Aktivierung von „Use condition” gemacht werden muss.

Zu dem \(v(t) \)-Diagramm gibt es dann einiges zu fragen bzw. zu bemerken:
Der hier eingezeichnete Backgroundgraph zeigt den v(t)-Graphen ohne Luftreibung (es wird dafür einfach cw von 0.5 auf 0 gesetzt).

Die Abweichung des roten Graphen von jenem ohne Reibung ist dort besonders groß, wo die Geschwindigkeit des Körpers besonders groß ist, also nach dem Abwurf und vor dem Aufprall. Die Würfbewegung verkürzt sich (hier von 6 auf etwa 4 Sekunden) und die Aufprallgeschwindigkeit ist unter Berücksichtigung der Reibung viel kleiner als die Abwurfgeschwindigkeit.

2.2.4 Der schiefe Wurf

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

a) Erstellen des Modells:

In einem neuen Modellfenster soll das unten abgebildete Modell erstellt werden:

Wie eigentlich bei allen Bewegungsmodellen ist auch hier die unabhängige Variable die Zeit \(t \). Sie soll vorerst mit einer Schrittweite \(dt=0.01 \) von 0 bis 10 laufen. Wenn das Modell richtig arbeitet, werden wir im Dialog der Modelleinstellungen die Stoppbedingung \(y<=0 \) einbauen und aktivieren.
Wir brauchen auch hier die Konstanten \(g \) und \(h_{\text{Abwurf}} \), sowie \(v_{\text{Betrag}} \) und \(\alpha \), das den Abwurfwinkel zwischen der Horizontalen und der Richtung des Geschwindigkeitsvektors in Grad repräsentieren soll.

Die Anfangswerte für \(v_x \) und \(v_y \) müssen mit Hilfe der Winkelfunktionen \(\sin(x) \) bzw. \(\cos(x) \) aus \(v \) und \(\alpha \) berechnet werden. Die Bestandsgröße \(v_x \) bleibt hier konstant, \(v_y \) verringert wegen den Outflows fortwährend seinen Wert. Wenn \(v_y \) negativ wird, führt das dann dazu, dass auch der anfänglich positive Inflow negativ wird und der geworfene Körper wieder sinkt.

Startwerte für \(h_{\text{Abwurf}} \) könnte 10, für \(v_{\text{Betrag}} \) 30 und für \(\alpha \) 50 sein. Den \(g \)-Wert holen wir aus der von Coach6 angebotenen Konstantenliste oder wir geben dort einfach 9,81 ein.

b) Erstellen des Diagramms „Wurfbahn und Geschwindigkeit“

horizontale Achse: Variable \(x \) mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable \(y \) mit einer Skalierung von 0 bis 50; blau
zweite vertikale Achse: hier soll die Gesamtgeschwindigkeit \(v \) in roter Farbe angezeigt werden; dieses \(v \) muss zuerst aber in der Diagrammtabelle berechnet werden. Dazu ordnen wir der nächsten freien Spalte C3 die Variable \(v_x \) und der Spalte C4 die Variable \(v_y \) zu. Die Spalte C5 wird nun über eine Formel mit der Diagrammtabelle verbunden; man wählt deshalb als „Connection‘ ‘Formula‘“ aus und gibt mit Hilfe des Formeleditors die bekannte Formel zur Berechnung des Betrages eines Vektors ein: \(\sqrt{v_x^2+v_y^2} \).

Damit die Wurfbahn nicht verzerrt erscheint, muss das Kontrollkästchen „Keep the same ratio“ im „Create/Edit diagram...“-Dialog aktiviert werden.

c) Erstellen einer unabhängigen Tabelle „Table 1“

Damit wir bei diesem Projekt auch ein paar Energieüberlegungen anstellen können, wollen wir für einen Körper der Masse 1 kg die potentielle, die kinetische und die gesamte Energie für jede Position der Wurfbahn berechnen. Deshalb stellen wir in dieser Tabelle die \(t(s), x(m), y(m), v(m/s), E_{\text{pot}}(J), E_{\text{kin}}(J) \) und \(E_{\text{ges}}(J) \) dar. Die benötigten Energieformeln sind sicher bekannt.

d) Aufgaben- und Fragestellungen

Wenn die Abwurfstelle über dem Aufprallniveau liegt, ist die Aufprallgeschwindigkeit größer als die Abwurfgeschwindigkeit. Die potenzielle Energie des Wurfgegenstandes beim Abwurf wandelt sich in zusätzliche kinetische Energie um.

Wenn die Abwurfhöhe gleich Null ist, wird bei 45° die größte Wurfweite erzielt. Die Wurfweiten bei 40° und bei 50°, bei 30° und bei 60° sowie bei 20° und 70° sind jeweils gleich.

Ein 800 g schwerer Speer, der mit 25m/s in 1,8m Höhe die Hand des Speerwerfers unter einem Winkel von 45 Grad verlässt, hat eine Startenergie von 330,16*0,800=264 Joule und würde ohne Luftwiderstand mit einer Geschwindigkeit von 25,7m/s in einer Entfernung von 65,5m landen.
2.2.5 Der Brems- und Anhalteweg

Zusatzeangebot:
Demofilm „So mache ich ein Coach6-Diagramm bei einem Grafikmodus-Modell“, Arbeitsblatt/Protokollvorlage. [Start des Demofilms]

Kurzbeschreibung der Aufgabenstellung:

Mache ein Modell, mit dem man im ersten Diagramm die Abhängigkeit der Geschwindigkeit vom Weg darstellen kann. Im zweiten Diagramm soll die Geschwindigkeit als Funktion der Zeit sichtbar werden. Fahrgeschwindigkeit, Reaktionszeit und Bremsverzögerung sollen in Simulationen variiert und ihr Einfluss auf den Weg untersucht werden können.

a) Erstellen des Modells

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable t soll die Werte von 0 bis 15 durchlaufen, eine brauchbare Schrittweite ist 0.01. Damit das Variablensymbol für t auch angezeigt wird, muss in seinem Eigenschaftenfenster unten 'Symbol visible.' aktiviert sein. Die Modellvariable a wird durch die zwei Konstanten ReaktionsZeit und Wert_a und durch die unabhängige Variable t bestimmt. Die Definition von a erfolgt also mit Hilfe einer Bedingung, die im Eigenschaftenfenster bei 'Use condition' mit Hilfe des Formeleditors eingetragen wird. Solange die Zeit t kleiner oder gleich der Reaktionszeit ist, ist der Wert von a gleich Null (es wird nicht gebremst), danach ist er gleich dem Wert der Konstanten Wert_a.

Die Bestandsvariable (state variable) v wird durch einen Outflow verändert; dies bedeutet, dass positive Beschleunigungswerte die Geschwindigkeit vermindern. Die Bestandsvariable x wird durch einen Inflow verändert; d.h. positive Geschwindigkeitswerte vergrößern den Weg. Der Anfangswert des Weges x ist Null, der Anfangswert von v ist durch die Konstante v_km_pro_h bestimmt; v_km_pro_h*3.6 lautet die Initialisierungszeile von v. Startwert der Konstanten v_km_pro_h sei 20*3.6; so hat v den „schönen“ Wert 20 m/s.

Zeichne zuerst alle Symbole und Verbindungspfeile ins Modellfenster und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von a zum
Outflow von v gezeichnet ist, ist dort schon alles erledigt. Ein Flow ist eine Änderungsrate, die angibt, um wie viel sich die Bestandsgröße während der Einheit der unabhängigen Variablen verändert. Die wirkliche Änderung einer Bestandsgröße bei der iterativen Durchrechnung des Modells ist dann bezogen auf ein 'Step interval' gleich dem Flow multipliziert mit dem Wert dieses Intervalls. Das bedeutet etwa für den Outflow dieses Modells: der Flow ist a; die Änderung während eines Zeitintervalls ist a^*dt.

b) Erstellen des Diagramme

Diagramm 1: „$v = f \text{(Weg)}$“

horizontale Achse: Variable x mit Skalierung von 0 bis 130
erste vertikale Achse: Variable v mit Skalierung von 0 bis 30; rot
zweite vertikale Achse: hier wollen wir die Geschwindigkeit in km/h anzeigen; dazu rechnen wir in der der Spalte C3 dieser Diagrammtabelle die Geschwindigkeit v in km/h um; als 'Connection' dieser Spalte ist 'Formula' anzuwählen, bei 'Quantity geben wir v in km/h ein, bei 'Unit' verzichten wir auf einen Eintrag und bei 'Formula' muss die Umrechnungsformel eingegeben werden, die da lautet: $v*3.6$ oder $C2*3.6$. Für den Maximalwert tragen wir 108 ein, weil $108 = 30*3.6$ ist und weil sich so der grüne Geschwindigkeitsgraph in km/h unter dem Geschwindigkeitsgraphen in m/s versteckt. Trotzdem wird beim Scannen die Geschwindigkeit in m/s und in km/h in verschiedenen Farben angezeigt.

Diagramm 2: „$v = f \text{(Zeit)}$“

horizontale Achse: unabhängige Variable t mit Skalierung von 0 bis 15
erste vertikale Achse: Variable v mit Skalierung von 0 bis 30; rot

c) Frage- bzw. Aufgabenstellungen:

(1) Die Geschwindigkeit nimmt während des Bremsvorganges zeitlich linear ab (gleichmäßig beschleunigte Translation), in Abhängigkeit vom Weg bzw. vom Ort ist dies aber bei weitem nicht so. Auf den letzten Metern des Bremsweges nimmt die Geschwindigkeit am stärksten ab. Wenn also nur wenige Meter bis zum Stillstand des Fahrzeuges fehlen, kommt es bei einer relativ hohen Geschwindigkeit zu einem Crash.

(2) In Fahrschule und Physikunterricht lernt man folgende Näherungsformeln:

$B[m] = Z[km/h] * Z[km/h] = Z * Z$
Bremsweg in m ist Zehnerzahl der Geschwindigkeit in km/h mal Zehnerzahl der Geschwindigkeit in km/h. z.B.: $v = 70 \text{ km/h } \Rightarrow Z = 7 \Rightarrow B = 49 \text{ m}$

$A[m] = Z[km/h]^3(3)[km/h] + 3) = Z * (Z+3)$
Anhalteweg in m ist Zehnerzahl ...z.B.: $v = 70 \text{ km/h } \Rightarrow Z = 7 \Rightarrow A = 7^*(7+3) = 70\text{ m}$
Wie ein paar Beispiele zeigen, stimmen diese Näherungsformeln gut mit den Ergebnissen unseres Modells überein. Ob die Näherungsformeln eher zu große oder eher zu kleine Zahlen liefern, kann auch leicht geklärt werden. Ganz wichtig dabei ist zu wissen und zu beachten, dass diese Näherungsformeln nur bei einer Bremsverzögerung von 4 m/s^2 und bei einer Reaktionszeit von 1 s richtig sind, also bei trockener Fahrbahn und „nüchternem“ Fahrer.

(3) Für die Untersuchung des Bremsweges muss einfach die Reaktionszeit im Modell auf Null gesetzt werden. Beim Variieren der Geschwindigkeit von 30km/h auf 60
km/h und 90 km/h beobachtet man, dass der Bremsweg sich zuerst vervierfacht, dann verneunfacht. Die Wahl der Geschwindigkeit ist also äußerst wichtig.

(4) Der Einfluss der Bremsverzögerung auf den Brems- und Anhalteweg soll ebenfalls noch erforscht werden. Die Bremsverzögerung a wird bei einem fahrtüchtigen Auto durch die Beschaffenheit der Fahrbahn bestimmt. Auf ebener und trockener Asphaltstraße ist a etwa 4 oder gar 5 m/s², auf nasser Fahrbahn 3m/s², auf trockener Schneefahrbahn etwa 2 m/s² und bei Aquaplaning geht dieser Wert gegen Null.

Variere für die eingestellte Geschwindigkeit von 20 m/s = 72 km/h die Bremsverzögerung a von 4m/s² auf 3m/s² bis 2m/s². Bei halb so großer Bremsverzögerung ist der Bremsweg doppelt so groß. Bremsverzögerung und Bremsweg sind zu einander indirekt proportional.

(5) Schließlich soll noch simuliert werden, wie sich das auf den Anhalteweg auswirkt, wenn plötzlich nach 60m das Fahrzeug auf einen Straßenabschnitt mit Schnee-Matsch kommt. Die Bremsverzögerung sei ab dort nur noch 1m/s².

Dazu speichern wir die aktuell bearbeitete Aktivität zuerst mit der [F2]-Taste ab, danach mit File/Activity/Save as... mit dem Zusatz 'mit Schnee' ein zweites Mal. So haben wir eine neue Aktivität erzeugt, in deren Modell wir ein paar Änderungen und Ergänzungen vornehmen wollen.

Als erstes setzen wir ein sog. Eventsymbol ins Modellfenster und nennen es Schnee.

Da ein Event nur Bestandsgrößen steuern kann, müssen wir die Konstante Wert_a mit der Schere löschen und gegen eine Bestandsgröße gleichen Namens austauschen.

Wir machen einen Connektorpfel von x zum Eventsymbol und geben in seinem Eigenschaftenfenster bei ‘On’ die Trigger-Bedingung x>=60 ein; dabei kann auch mit ‘Formula’ der Formeleditor verwendet werden.

Als Aktion soll mit Hilfe der Schaltfläche ‘Add’ die neu gemachte Bestandsgröße Wert_a ausgewählt und mit dem Wert 1 belegt werden.

2.2.6 Das horizontale Federpendel

Zusatzangebot:
Arbeitsblatt/Protokollvorlage; Protokoll.

Kurzbeschreibung der Aufgabenstellung:
Eine Masse, z.B. eine kleine Kugel, ist zwischen zwei gleichartige Federn „eingespannt“. Die Masse wird in eine Richtung horizontal ausgelenkt und schwingt dann hin und her.

Die Kugel „fliegt“ bzw. gleitet reibungsfrei hin und her; zuerst sehen wir von der inneren Reibung in den Federn ab, dann aber setzen wir eine zur Geschwindigkeit proportionale Reibungskraft an.

Die beiden Federn sind völlig gleich; \(k_1 = k_2 \) und \(k_1 + k_2 = k \). Die sich einstellende Schwingung soll im Diagramm untersucht werden, wobei wir uns im Speziellen für die Periodendauer und die Frequenz interessieren. Auch in den Graphen der gedämpften Schwingung soll eine mathematische Funktion eingepasst und deren Parameter ausgewertet werden.

a) Erstellen des Modells:

Beim Einrichten der Aktivität lassen wir die Standard-Einstellung für das Winkelmaß unverändert, da man damit Schwingungen besser bearbeiten kann.

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Unabhängige Variable des Modells ist auch hier die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=0.01 \) von 0 bis 15 laufen. Wenn wir diese Festlegungen im Dialog der Modelleinstellungen (Model Settings) treffen, wählen wir als Berechnungsme-
thode diesmal bewusst RK2 (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) aus. Das aktivierte Berechnungsverfahren wird auch im Modelfenster links unten angezeigt.

Wie bei jeder Bewegung bedarf es einer Beschleunigung \(a \), welche für eine Veränderung der Geschwindigkeit \(v \) sorgt, die ihrerseits für einen Weg, hier für eine Auslenkung \(\Delta_x \), verantwortlich ist. Die Beschleunigung \(a \) wird unter Anwendung des zweiten Newtonschen Axioms mit der Federkraft und der Masse \(m \) definiert. Die Federkraft muss mit einem minus definiert werden (Federkraft: \(-k \Delta_x\)), da die Kraft immer entgegengesetzt zur Auslenkung wirkt. Startwert von \(v \) ist Null, Startwert von \(\Delta_x \) sei 0.3 (wir haben lauter SI-Einheiten in Verwendung), da die schwingende Masse zu Beginn ja ausgelenkt sein muss, wenn sich eine Schwingung einstellen soll. Passende Werte der Konstanten: \(m = 0.1 \text{ kg}; k = 0.2 \text{ N/m} \). Die Zahl der Dezimalstellen sollte bei allen Variablen-Symbolen des Modells auf mindestens 3 gestellt werden.

Wenn man nach Fertigstellung des Modells einfach eine Durchrechnung startet, sieht man an den angezeigten Zahlenwerten im Modelfenster die Schwingung eigentlich nicht. Man müsste mit dem 'Run Controller' die Durchrechnungsgeschwindigkeit herunter setzen. Am einfachsten sieht man hier die Funktionstüchtigkeit des Modells, wenn man gleich das Diagramm (horizontal \(t \) von 0 bis 15, vertikal \(\Delta_x \) von -0.5 bis +0.5) erstellt.

Wenn man das horizontale Federpendel auf ein gedämpftes erweitern will, könnte man dies in einer neuen Aktivität wie links abgebildet machen. Die zweite wirkende Kraft ist jetzt \(F_{\text{Reibung}} \). Sie soll proportional zu \(v \) sein und hat als Definition \(-Reib_Const \cdot v\). Auch hier ist ein Minus nötig, da diese Kraft immer entgegengesetzt zur Richtung der Geschwindigkeit wirkt. Ein passender Zahlenwert für \(Reib_Const \) ist 0.03. Die beiden Teilkräfte werden zu \(F_{\text{ges}} \) zusammengefasst und erst daraus wird die wirksame Beschleunigung \(a \) berechnet.

\[Reib_Const \] ist 0.03. Die beiden Teilkräfte werden zu \(F_{\text{ges}} \) zusammengefasst und erst daraus wird die wirksame Beschleunigung \(a \) berechnet.

b) Erstellen der Diagramms „\(\Delta_x \) als Funktion der Zeit \(t \)“

horizontale Achse: unabhängige Variable \(t \) mit einer Skalierung von 0 bis 15
erste vertikale Achse: Variable \(\Delta_x \) mit einer Skalierung von -0.5 bis 0.5; blau

Auch bei der gedämpften Federschwingung kann dieses Diagramm verwendet werden.

c) Erstellen einer unabhängigen Tabelle „Table 1“

Für das leichtere Ablesen interessierender Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der \(t, \Delta_x, v \) und \(a \) angezeigt werden.

d) Aufgaben- und Fragestellungen

(1) Beim horizontalen Federpendel ohne Reibung:

Für die erste Untersuchung verändern wir kurzfristig im Diagram die Zeitachskalierung und in den Modelleinstellungen den Stopwert auf 60s. Im Scan-Modus un-
tersuchen wir danach die zeitlichen Abstände der Maxima, um festzustellen, dass
diese äquidistant sind, und dass deshalb die Periodendauer der Schwingung kon-
stant ist. Anschließend machen wir diese Veränderungen im Modellsetting und im
Diagramm wieder rückgängig.

Wieder im Scan-Modus bestimmen wir die Periodendauer T der Schwingung für die
Startwerte des Modells und berechnen daraus die Frequenz f.

Indem wir bei einer Simulation die Werte der Masse m von 0.1 auf 0.2 und 0.4 erhö-
hen und die Graphen der entstehenden Schwingungen betrachten, können wir fest-
halten, dass die Periodendauer mit zunehmender Masse des schwingenden Körpers
auch ansteigt. Nach Beendigung der Simulation ist der Graph mit m=0.4kg noch im
Diagramm zu sehen. Ein Scan zeigt, dass die Periodendauer doppelt so groß ist wie
bei m = 0.1kg (Startwert). Bei vierfacher Masse verdoppelt sich die Periodendauer.
Die Periodendauer T muss also von der Quadratwurzel der schwingenden Masse m
abhängen.

Wenn wir analog bei einer Simulation die Werte der Federkonstanten k von 0.2 auf
0.4 und 0.8 erhöhen und die Graphen der entstehenden Schwingungen betrachten,
können wir festhalten, dass die Periodendauer mit zunehmender Masse des schwin-
genden Körpers kürzer wird. Nach Beendigung der Simulation ist der Graph mit
k=0.8N/m noch im Diagramm zu sehen. Ein Scan zeigt, dass die Periodendauer halb
so groß ist wie bei k = 0.2N/m (Startwert). Bei vierfacher Federkonstante wird die Pe-
riodendauer halb so groß. Die Periodendauer T muss also indirekt proportional zur
Quadratwurzel der Federkonstanten k sein.

Die Kombination dieser Untersuchungen: \(T \sim \sqrt{\frac{m}{k}} \); exakt gilt: \(T = 2\pi \sqrt{\frac{m}{k}} \). Eine Her-
leitung dieser exakten Formel ist hier nicht vorgesehen. Die davor durch Scannen
ermittelte Periodendauer T kann damit aber verifiziert werden.

Die Frequenz f bzw. die Periodendauer T kann noch auf eine weitere Art ermittelt
werden: Der Weg-Zeit-Graph einer harmonischen Schwingung hat die Formel:
\(y(t) = r \sin(\omega t + \phi) \). Wenn man nun in den Graphen unseres Federpendels eine ma-
thematische Funktion vom Typ \(f(x) = a \sin(bx+c) + d \) über das Grafik-Kontextmenü
Analyse/Function-Fit einpasst, dann ist offensichtlich der Parameter b gleich \(\omega = 2\pi f \).

\(b/(2\pi) = f \) und \(T = 1/f = 2\pi/b \). Für \(b = 1.414 \) ist \(T = 4.44 \)s. \(T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0.1}{0.2}} \approx 4.44 \). Erst
auf der Stelle der Tausendstelsekunde gibt es einen Unterschied.

(2)Beim horizontalen Federpendel mit Reibung:
Wenn man ein gedämpftes Federpendel betrachtet, ist man geneigt zu glauben, dass
sich die Periodendauer im Laufe der Zeit verändert. Wahrscheinlich wird die Abnahme
der Geschwindigkeit des schwingenden Körpers diesen falschen Eindruck verursachen.
Wie oben unter (1) beschrieben könnte man die Konstanz der Periodendau-
er nachweisen.

Die Periodendauer bzw. die Frequenz wird beim gedämpften horizontalen Federpen-
del ebenfalls nur durch die schwingende Masse und die Federkonstante der Federn
bestimmt.

Nun wollen wir auch in den Graphen der gedämpften Schwingung eine mathema-
tische Funktion einpassen. Wenn man dies mit allen unseren Startwerten (0.3m Aus-
lenkung, 0.1kg Masse, 0.2N/m Federkonstante und 0.03s/m Reib_Const) macht, bekommt man dieses Function-Fit-Fenster:

Leider fehlt in dieser Version noch die Bezeichnung der Koeffizienten. Von oben nach unten alphabetisch angeordnet werden die Werte der Koeffizienten angezeigt.

Der Koeffizient $b = 0.15$ ist mit der Exponentialfunktion für die Abnahme der Amplitude verantwortlich.

Der Koeffizient $c = \omega = 1.41$ enthält die Frequenz bzw. die Periodendauer (siehe oben)

Der Koeffizient $d = 7.74$ stellt die Phasenlage der Sinusfunktion dar. Da dieser Wert größer als die Periode $2\pi \approx 6.28$ ist, könnte er händisch noch optimiert werden und durch 1.46 (7.74-6.28) ersetzt werden. Wenn man das macht, ändert sich an der Einpassung gar nichts, auch wenn man neuerlich auf [Auto fit] klickt.

Falls diese Einpassung durch Drücken von 'OK' ins Diagramm übertragen wird, sieht man nur eine zusätzliche Beschriftung, da der eingepasste Graph genau unter dem
2.2.7 Das vertikale Federpendel

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:
An eine senkrecht hängende Schraubenfeder wird ein Massenstück gehängt. Die Masse beginnt auf und ab zu schwingen, bis der Schwingungsvorgang zum Stillstand kommt und das Massenstück ruhig an einer gedehnten Feder hängt.

Masse und Federkonstante sind bekannt. Untersuche diese Pendelbewegung mit Modell und Diagramm und verifiziere die Simulationsergebnisse durch ein reales Experiment.

a) Erstellen des Modells:

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Bei Schwingungen ist es zweckmäßig, für die beiden Bestandsgrößen Geschwindigkeit \(v \) und Weg (hier \(\text{Delta}_y \)) jeweils \textit{Inflows} einzusetzen.

Unabhängige Variable des Modells ist auch hier die Zeit \(t \). Sie soll mit einer Schrittweite \(dt = 0.005 \) von 0 bis 10 Sekunden laufen. Da wir eine Schwingung untersuchen wollen, wählen wir als Berechnungsmethode RK2 (Runge Kutta Verfahren, bei dem die Intervalsschritte halbiert werden) im Dialog der Modelleinstellungen aus.

Wie bei jeder Bewegung bedarf es einer Beschleunigung \(a \), welche für eine Veränderung der Geschwindigkeit \(v \) sorgt, die ihrerseits für einen Weg, hier für eine Auslen-
kung Δ_y, verantwortlich ist. Die Beschleunigung a wird unter Anwendung des zweiten Newtonschen Axioms mit der wirkenden Gesamtkraft F_{ges} und der Masse m definiert. Die Federkraft muss mit einem minus definiert werden (Federkraft: $-k \Delta_y$), da die Kraft immer entgegengesetzt zur Auslenkung wirkt. Auch die Festlegung des Gewichtes braucht ein negatives Vorzeichen, weil der Vektor von Gewicht immer nach unten orientiert ist.

Die Festlegung des Startwertes von v erfolgt über die Konstante v_{Start} und ist Null, jener von Δ_y über $\text{Start}_\Delta y$ und ist ebenfalls Null. Das Gewicht der Masse $m = 0.1\,\text{kg}$ wird die Bewegung initiieren. Für die Federkonstante k ist $3\,\text{N/m}$ ein passender Wert. Die Zahl der Dezimalstellen stellen wir bei allen Variablen-Symbolen des Modells auf mindestens 3 ein.

Die Funktionstüchtigkeit des Modells sieht man am schnellsten, wenn man gleich das Diagramm (horizontal t von 0 bis 10, vertikal Δ_y von -1 bis +0.5) erstellt.

Wenn man das oben modellierte Federpendel auf ein gedämpftes erweitern will, könnte man dies – ev. in einer neuen Aktivität - wie links abgebildet machen.

Die dritte wirkende Kraft ist jetzt F_{Reibung}. Sie soll proportional zu v sein und hat als Definition $-\text{Const}_{\text{Reib}} \cdot v$. Auch hier ist das Minus nötig, da diese Kraft immer entgegengesetzt zur Richtung der Geschwindigkeit wirkt. Ein passender Zahlenwert für $\text{Const}_{\text{Reib}}$ ist 0.05. Die drei Teilkräfte werden zu F_{ges} zusammengefasst und erst daraus wird die wirksame Beschleunigung a berechnet.

b) Erstellen der Diagramms „Δ_x als Funktion der Zeit t“

horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 10; wenn wir die gedämpfte Schwingung untersuchen, wählen wir als Skalierung von 0 bis 20.

Erste vertikale Achse: Variable Δ_y mit einer Skalierung von -1.0 bis 0.5; blau

c) Erstellen einer unabhängigen Tabelle „Table 1“

Für das leichtere Ablesen interessierender Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der t, Δ_y, v und a angezeigt werden.

d) Aufgaben- und Fragestellungen

(1) Beim vertikalen Federpendel ohne Reibung:

 Wenig überraschend entsteht wieder eine harmonische Schwingung, da elastische Körper ja immer harmonisch schwingen.

Die Konstanz der Periodendauer nehmen wir als bekannt zur Kenntnis; beim horizontalen Federpendel haben wir sie detailliert untersucht. Die Anwendung der For-
mel \(T = 2\pi \sqrt{\frac{m}{k}} \) und der Vergleich des Ergebnisses mit jenem T-Wert, den man durch maximal zwei Scans im Diagramm ermitteln kann, zeigen, dass auch hier die Periodendauer bzw. die Frequenz nur durch die Größe der schwingenden Masse \(m \) und der Federkonstante \(k \) bestimmt wird.

Neben der Frequenz \(f \) bzw. der Periodendauer \(T \) kann auch die Längenänderung der Feder nach Beendigung des Schwingungsvorganges durch das Einpassen der richtigen mathematischen Funktion in den Schwingungsgraphen ermittelt werden. Diese Längenänderung ist nämlich genau jene Größe, um die die Sinusfunktion nach unten verschoben im Diagramm zu sehen ist.

Der Weg-Zeit-Graph einer harmonischen Schwingung hat die Formel: \(y(t) = r \sin(\omega t + \phi) \). Wenn man nun über das Grafik-Kontextmenü die Option 'Analyse/Function-Fit' auswählt und beim Einpassen der Funktion den Typ \(f(x) = a \sin(bx+c)+d \) verwendet, dann ist offensichtlich der Parameter \(a=0.33 \) die Amplitude \(r \) in m. Aus dem Parameter \(b=5.48 \) kann wegen \(b=\omega=2\pi f=2\pi/T \) mit \(T=2\pi/b = 2\pi/5.48 \) die Periodendauer berechnet werden, der Parameter \(c=1.57 \) beschreibt die nötige Phasenlage \(\phi \) der Sinusfunktion zur Beschreibung der Schwingung und der Parameter \(d=-0.33 \) gibt als additive Konstante die vertikale Verschiebung der Sinusfunktion nach unten an. Nach Beendigung der Schwingung – dazu wird aber eine Reibung nötig sein – wird die Längenänderung also 0.33 m betragen.

Mit Hilfe des Federkraftgesetzes \(F = k \Delta x \) (hier als Betragsgleichung angeschrieben) kann die Längenänderung nach \(\Delta x = F/k \) berechnet werden. Dabei ist die Kraft \(F \) das Gewicht der an der Feder hängenden Masse \(m \rightarrow \Delta x = m \cdot g/k = 0,1 \cdot 9,81/3 = 0,327m \).

(2) Beim horizontalen Federpendel mit Reibung:
Die Periodendauer bzw. die Frequenz wird beim gedämpften horizontalen Federpendel ebenfalls nur durch die schwingende Masse und die Federkonstante der Feder bestimmt. Die Dämpfung bzw. Reibung beeinflusst die Periodendauer nicht.

Auch in den Graphen der gedämpften Schwingung kann man eine mathematische Funktion einpassen. Weil die Einpassung so perfekt gelingt, wird der eingepasste Graph vom Modell überall überdeckt, sodass nur die Beschriftung sichtbar wird. Mit den Konstanten \(m=0.1 \text{ kg}, k=3N/m \) und \(\text{Const._Reib}=0.05 \) interessieren wir uns diesmal beim Funktionstyp \(f(x)=a \cdot \exp(-b \cdot x) \sin(c \cdot x+d)+e \) vor allem für die Parameter \(a, b \) und \(e \), da wir damit die beiden Einhüllenden des Graphen der gedämpften Schwingung ins Diagramm zeichnen können.

Im Function-Fit-Fenster der Option 'Analyse/Function-fit' des Diagrammkontextmenüs ergeben sich wir für den oben beschriebenen Fall folgende Parameterwerte:
\(a = 0.33, b = 0.25 \) und \(e = -0.33 \).

Die beiden Einhüllenden haben dann die Gleichungen: \(f(t) = \pm a \cdot \exp(-b \cdot t) + e = \pm 0.33 \cdot \exp(-0.25 \cdot t) + (-0.33) \).

Mit diesen Formeln in den Spalten C4 und C5 der Diagrammtabelle können wir handisch die Graphen dieser Einhüllenden ins Diagramm zeichnen lassen, wobei die Skalierung der ersten vertikalen Achse wie in den Spalten C2 und C3 erfolgen muss.
Nachfolgend ist das Ergebnis all dieser Bemühungen im Diagramm zu sehen:

![Diagramm einer gedämpften vertikalen Feder­schwingung](image)

100 g werden hier an eine Feder mit \(k = 3 \text{N/m} \) gehängt.

Einhüllende 1: \(f(t) = 0.33 \exp(-0.25t) - 0.33 \)

Einhüllende 2: \(f(t) = -0.33 \exp(-0.25t) - 0.33 \)

Fit of \(\Delta_y \): \(f(t) = 0.32700 \exp(-0.25211t) \sin(5.47201t + 1.52587) - 0.32700 \)

Die letzte Formel wird beim Schließen des 'Function-fit'-Fensters mit 'OK' in die Spalte C3 bei 'Formula' hineingeschrieben, wobei bis zu 18 Dezimalstellen bei einzelnen Parametern angeführt sein können.

e) Anpassung des Modells an ein Experiment:

Mit einem einfachen Experiment kann das Modell verifiziert werden. Die Federkonstante \(k \) der verwendeten Feder kann dabei statisch oder dynamisch ermittelt werden. Wenn für \(k \) und \(m \) jene Werte jene Werte eingesetzt werden, die tatsächlich diese Größen im Experiment haben, sagt das Modell die beobachtbare Längenänderung voraus.

2.2.8 Das Fadenpendel

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Ein Massenstück hängt an einem Faden und wird seitlich bei gespannter Schnur ausgelenkt. Nach dem Loslassen des Massenstückes schwingt dieses auf einem Kreisbogen hin und her. Obwohl das Aufsteigen und das Hinabfallen der Masse die Schwingung antreibt, interessieren wir uns für jene Schwingung, die in der horizontalen x-Richtung zu beobachten ist.

Untersuche diese Pendelbewegung mit Modell und Diagramm und studiere speziell die Phasenlage zwischen Auslenkung, Geschwindigkeit und Beschleunigung in der x-Richtung.
a) Erstellen des Modells:

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Beim Anlegen der Aktivität oder durch den Hauptmenüpunkt Options, dann 'Activity options..' und Register 'Advanced' soll das Winkelmaß auf Degree ge- stellt werden.

Es ist zweckmäßig, für die beiden Be- standsgrößen Geschwindigkeit v und Weg (hier Auslenkung_x) jeweils einen Inflow einzusetzen.

Unabhängige Variable des Modells ist die Zeit t. Sie soll mit einer Schrittweite dt=0.01 von 0 bis 10 Sekunden laufen. Da wir eine Schwingung untersuchen wollen, wählen wir als Berechnungsmethode RK2 (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) im Dialog der Modelleinstellungen aus.

Die Beschleunigung a_x ist die Normal-Projektion der treibenden Komponente von g (kurz: g_treib) in die x-Richtung und ist deshalb als a_x=g_treib*cos(alfa) definiert. Zur Festlegung der Variablen g_treib brauchen wir die Sinusfunktion; wie aus der Skizze zu sehen ist, gilt g_treib = -g*sin(alfa), wobei das wichtige Minus anzeigt, dass diese Beschleunigung immer gegen die aktuelle Auslenkung orientiert ist.

Die Variable alfa wird über die Pendel_Länge und die Auslenkung_x des Pendels definiert. In dem rechtwinkligen Dreieck mit diesen Seiten gilt für den Winkel: alfa = ArcSin(Auslenkung_x/Pendel_Länge)

Passende Konstantenwerte: Pendel_Länge=1.5m, Start_x=0.6m und v_Start=0m/s. Die Zahl der Dezimalstellen stellen wir überall außer bei den Konstanten des Modells auf 3 ein.

Die Richtigkeit des Modells sieht man am schnellsten, wenn man gleich das Diagramm (horizontal t von 0 bis 10, vertikal Auslenkung_x von -1 bis +1) zur Kontrolle einsetzt.

Links ist das Modell des gedämpften Fadenpendels dargestellt. Während der Durchrechnung des Modells werden die aktuellen Werte der Variablen und Konstanten angezeigt. Man bezeichnet das als Monitoring. Neu dazugekommen ist hier die Beschleunigung a_Reib, welche aus der Reibungskraft F_Reib und der Masse m (0,50kg) berechnet wird. Die Konstante Const_Reib hat mit 0.10 einen passenden Wert.
b) Erstellen der Diagramms „$x(t)$ v. $x(t)$ und $a_x(t)$“
horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 10; wenn wir die gedämpfte Schwingung untersuchen, wählen wir als Skalierung von 0 bis 30
erste vertikale Achse: Variable $Auslenkung_x$ mit einer Skalierung von -1.0 bis 1.5; blau
zweite vertikale Achse: Variable v_x (rot) und Variable a_x (grün) mit einer Skalierung von -10 bis 10.

c) Erstellen einer unabhängigen Tabelle „Table 1“
Für das leichtere Ablesen der Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der t, $Auslenkung_x$, v_x und a_x angezeigt werden.

d) Aufgaben- und Fragestellungen
Nur beim ungedämpften Fadenpendel wollen wir einige Überlegungen anstellen; falls wir eventuell gar kein ungedämpftes Modell mehr haben, setzen wir im Modell mit Reibung einfach die Konstante $Const_\text{Reib}$ auf Null.

Auf den ersten Blick erkennt man:
Alle drei wichtigen Größen der Schwingung, x, v_x und a_x, ändern sich nach einer Sinusfunktion. Falls man seinen Augen nicht ganz vertraut, weiß man nach wenigen Scans, dass Periodendauer und Frequenz für alle drei Größen identisch sind. Die drei Amplituden sind deutlich unterschiedlich groß, weshalb auch unterschiedliche Achskalierungen nötig sind.

Die Schwingungen von Auslenkung, Geschwindigkeit und Beschleunigung sind zu einander zeitlich deutlich verschoben.

Auslenkung und Beschleunigung schwingen gegenphasig; zu jedem Zeitpunkt, bei dem die Auslenkung ein Maximum hat, hat die Beschleunigung ein Minimum und umgekehrt. Die zeitliche Differenz dieser Schwingungen ist $T/2$, der Phasenunterschied im Bogenmaß beträgt π.

Bekanntlich gilt: T entspricht 2π, $T/2$ entspricht π und $T/4$ entspricht $\pi/2$.

Mit Hilfe des Diagramms kann man foldendes feststellen:

$$y(t) = r \cdot \cos(\omega t) = r \cdot \sin(\omega^* (t+T/4)) = r \cdot \sin(\omega^* t+\pi/2)$$
$$a(t) = - a_0^* \cos(\omega t) = a_0^* \sin(\omega^* (t-T/4)) = a_0^* \sin(\omega^* t-\pi/2)$$

Und für die Geschwindigkeit gilt: $v(t) = - v_0^* \sin(\omega t) = v_0^* \sin(\omega t-\pi)$

Dass die Geschwindigkeitsamplitude v_0 und die Beschleunigungsamplitude a_0 von der Amplitude r der Auslenkung und von der Kreisfrequenz ω abhängen, ist hier nicht so einfach zu erkennen, kann aber durch Differenzieren von $y(t)$ rechnerisch leicht
gezeigt werden \((v_0=r\omega; a_0=r\omega^2)\). Mit den Zahlenwerten dieses Beispiels lassen sich diese Zusammenhänge auch überprüfen.

Zuletzt soll noch durch eine Simulation erforscht werden, wovon die Periodendauer \(T\) bei einem Fadenpendel abhängt. Wenn die Winkelausschläge \(\alpha\) klein sind, gibt es eine relativ einfache Formel für \(T\). Im Modell ohne Reibung kommt z.B. die Größe \(m\) gar nicht vor. Deshalb kann die Masse auch keinen Einfluss auf \(T\) haben. Wir variieren also die Pendellänge und bekommen folgendes Diagramm:

![Diagramm zur Pendellänge]

Damit wir kleine Winkelausschläge bekommen, sind hier große Pendellängen simuliert worden.

Beim Vervierfachen der Pendellänge hat sich die Periodendauer verdoppelt. Die Periodendauer hängt also von der Quadratwurzel der Pendellänge ab.

Der Einfluss der Schwerebeschleunigung auf die Periodendauer kann mit dieser Simulation verdeutlicht werden:

Bei einer Fadenlänge von 10m ist hier die Schwerebeschleunigung von 20 über 10 auf 5m/s² verringert worden. Wenn man \(g\) auf ein Viertel verkleinert, vergrößert sich \(T\) offensichtlich auf das Doppelte. Die Periodendauer ist indirekt proportional zur Quadratwurzel der Schwerebeschleunigung.

Zusammenfassend gilt für ein Fadenpendel: \(T \sim \sqrt{\frac{P - \text{Länge}}{g}}\).

2.2.9 Satellitenbahnen

Zusatzangebot:
Arbeitsblatt/Protokollvorlage; Protokoll.

Kurzbeschreibung der Aufgabenstellung:
Mit dem Newtonschen Gravitationsgesetz kann bekanntlich die Entstehung der Planeten- und Satellitenbahnen erklärt werden. Da sich Planeten und Satelliten jeweils in einer Bahnebene bewegen, haben wir es auch hier mit einem zweidimensionalen Problem zu tun. Der radial wirkende
Beschleunigungsvektor muss in zwei Komponenten zerlegt werden, was aber die einzige kleine mathematische Herausforderung darstellt:
\[a_x = -\frac{G \cdot M \cdot x}{r^3} \quad \text{und} \quad a_y = -\frac{G \cdot M \cdot y}{r^3} \]
mit \(r = \sqrt{x^2 + y^2} \)
G heißt in Coach GC !

Mit einem Modell und zwei Diagrammen erforschen wir, wie bei dieser Bewegung die Gestalt der Bahn von der Geschwindigkeit und von Entfernung des Satelliten zur Erde abhängt. Außerdem soll die Schwankung der Bahngeschwindigkeit bei einem oder mehreren Umläufen sichtbar werden.

a) Erstellen des Modells:

In einem neuen Modelfenster soll das hier abgebildete Modell erstellt werden:

Unabhängige Variable des Modells ist die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=5 \) von 0 bis 20000 (vollständig) laufen. Wir wählen als Berechnungsmethode \(\text{RK2} \) (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) im Dialog der Modelleinstellungen aus.

Die drei Konstanten \(GC, M_{\text{EARTH}} \) und \(R_{\text{EARTH}} \) können direkt aus der Konstantenliste von Coach6 ausgewählt werden (deshalb diese spezielle Schreibweise). Der Startwert von \(v_x \) ist in der Bestandsgröße \(v_x \) als Null definiert. Der Startwert von \(v_y \) wird über die Konstante \(v_y\text{_Start} \) bestimmt. Die Konstante \(h\text{_Start} \) soll in \(\text{km} \) eingegeben werden und beschreibt die Höhe des Satelliten dort, wo die Berechnung und Darstellung der Bahn begonnen wird. Innerhalb der Bestandsgröße \(x \) muss ihr Startwert dann in Meter umgerechnet und um den Erdradius (\(R_{\text{EARTH}} \)) erhöht werden. Der Startwert der Bestandsgröße \(y \) ist Null.

Die Variable \(r \) wird durch die aktuellen Werte von \(x \) und \(y \) definiert; sie ist sehr wichtig für die Definition der beiden Beschleunigungskomponenten \(a_x \) und \(a_y \), deren Formeln weiter oben beschrieben sind.

Trotz der Farben, die die Lesbarkeit des Modells erleichtern sollen, ist dieses Grafikmodus-Modell zumindest auf den ersten Blick nicht sehr übersichtlich.

Im Textmodus-Modell links ist zumindest der Anweisungssteil sehr klar gestaltbar. Bei den Festlegungen der Konstanten und Startwerte im rechten Teil des Modelfensters muss aber auch auf die Reihenfolge geachtet werden.
b) Erstellen der Diagramme und einer Tabelle

Diagramm „Satellitenbahnen“

Damit die Bahnen nicht verzerrt gezeichnet werden, muss das Kontrollkästchen ‚Keep the same ratio‘ im Diagramm-Edit-Dialog aktiviert werden.

horizontale Achse: Variable \(x\) mit einer Skalierung von \(-70E6\) bis \(30E6\);
erste vertikale Achse: Variable \(y\) mit einer Skalierung von \(-30E6\) bis \(30E6\); rot

Die Coach-Schreibweise \(30E6\) bedeutet \(30*10^6\); \(6.67E-11\) steht für \(6,67*10^{-11}\)

Tabelle „Table 1“

Diagrammtabellen haben immer den gleichen Namen wie ihre Diagramme. Bei unabhängigen Tabellen bin ich meistens mit den vorgeschlagenen Namen wie Table 1 oder Table 2 zufrieden.

Die Tabelle Table1 soll neben dem Zeilenindex folgende vom Modell berechnete Größen anzeigen: \(t, r, v_x, v_y\) In der nächsten Spalte lassen wir die Bahnge- schwindigkeit \(v\) anzeigen, die mittels der Formel \(\sqrt{v_x^2+v_y^2}\) berechnet wird.

Diagramm „\(v_Bahn = f (Zeit)\)“

horizontale Achse: Variable \(t\) mit einer Skalierung von 0 bis 30000;
erste vertikale Achse: Größe \(v\), welche als ‚Formula v‘ bei ‚Connection‘ zur Auswahl steht, wenn man davor diese Größe in der Tabelle Table 1 mit Hilfe einer Formel berechnet hat; Skalierung von 0 bis 10000; grün

c) Aufgaben- und Fragestellungen

Zuerst arbeiten wir nur mit dem Diagramm Satellitenbahnen.

Einzeichnen des „blue planet“:

Die „blaue“ Erde soll als ‚Imported background graph‘ angezeigt werden. Dazu müssen wir diesen Graphen zuerst einmal als normalen Graphen zeichnen lassen. Wenn bei \(h_{Start}\) Null und bei \(v_{y_{Start}}\) 7900 eingeben wird, zeichnet das Modell genau die Erde, da \(v=7900\text{m/s}\) die 1.kosmische Geschwindigkeit, die Kreisbahngeschwindigkeit an der Erdoberfläche ist. Mit ein paar Scan-Klicks kann man sich davon überzeugen.

Durch einem Klick auf die Schaltfläche mit der blauen Diskette wird der Dialog ‚Save result as…‘ aufgerufen und diese aktuelle Bahn abgespeichert. Danach wechseln wir wieder in die ursprüngliche Aktivität und importieren über die Option ‚Import background graphs .‘ des Diagramm-Kontextmenüs diesen Graphen als Grafik in unser Diagramm, wobei wir ihn vor der Überschreitung zuerst noch blau einfärben. Falls etwas schieflaufend sein sollte, kann man die Aktion im Diagramm-Kontextmenü über ‚Delete background graphs / Imported‘ wieder rückgängig machen.

Falls man für ein und dieselbe Starthöhe \(h_{Start} = 100 \text{ km}\) die Geschwindigkeiten von 8500, über 9500, 10000 bis 11000 m/s über die Option ‚Parameter Exploration‘ des Diagramm-Kontextmenüs variiert, bekommt man das folgende Simulations-Diagramm. Alle so entstandenen Bahnen sind Ellipsenbahnen; bei einer Geschwindigkeit knapp über 11000 m/s bewegt sich der Satellit auf einer Parabelbahn, bei noch höheren Geschwindigkeiten auf Hyperbelbahnen. Die hier genannten Geschwindigkeiten beziehen sich auf einen Startpunkt 100 km über der Erdoberfläche und sind Tangentialgeschwindigkeiten.
Links die Simulation der Bahnen bei unterschiedlichen Geschwindigkeiten in m/s.

Diese Diagramme sind viel schöner, wenn man den ganzen Bildschirm dafür verwendet.

Bei gleicher Geschwindigkeit von 9000m/s sind hier unterschiedliche Höhen simuliert: 100km, 1000km und 2000km. Es entstehen ganz verschiedene Bahnen. Die größte Ellipsenbahn konnte nicht fertig gezeichnet werden, weil die Zahl der Durchrechnungszyklen zu klein war bzw. die Stoppzeit in den Modelleigenschaften nicht erhöht worden ist.

Zur eben dargestellten Simulation der Starthöhen gehört auch dieses Diagramm.

Die einheitliche Startgeschwindigkeit sowie die unterschiedlichen Umlaufzeiten sind deutlich zu erkennen. Je mehr eine Ellipsenbahn von einer Kreisbahn abweicht, desto stärker variiert die Bahngeschwindigkeit des Satelliten.

In diesem letzten Diagramm sehen wir zwei Graphen für die Startwerte 100km und 9500m/s. Grün ist die Bahngeschwindigkeit v und violett die Bahnbeschleunigung a dargestellt. Mit diesem Scan ermittelt man die Umlaufzeit (13170 s = 3,66 h) des Satelliten. Experten/innen können auf der zweiten vertikalen Achse auch noch a (neue Spalte mit Derivative(v); Skalierung !!) anzeigen.
2.2.10 Die ISS (International Space Station)

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Obwohl dies für unser Modell irrelevant ist, sei festgehalten, dass die Bahnebene der ISS gegenüber der Äquatorebene um 51,6° geneigt ist. Im gegenüber der Erde nächsten Punkt ihrer Bahn, dem Perigee, ist die ISS 350 km, im Apogee 450 km entfernt.

Verwende das Modell des Satellitenbahn-Projektes und passe auch das dort eingesetzte Diagramm durch eine Änderung der Skalierung der erdbenen Satellitenbahn an. Ermittle die Geschwindigkeiten in Peri- und Apogee und die Umlaufzeit der ISS.

a) Erstellen des Modells:

Andernfalls erstelle man das Modell so, wie dies im Projekt Satellitenbahnen beschrieben ist.

Da die ISS-Bahnen als erdnahen Bahnen viel kürzer als die mit diesem Modell bisher behandelten Satellitenbahnen sind, können wir die Schrittweite der unabhängigen Variablen \(t \) auf \(dt=1 \) setzen. Die \(t \)-Werte sollen von 0 bis 6000 laufen. Als Berechnungs methode wählen wir bzw. belassen wird RK2, das Runge Kutta Verfahren mit Intervallhalbierung.

Die Überschrift im Modellfenster kann nach einem Doppelschließen editiert werden. Die beiden
Inflows bei den Koordinaten sollten mit Flow_x und Flow_y bezeichnet und angezeigt werden, da wir diese in einer der zwei Tabellen brauchen.

b) Erstellen des Diagramms „ISS-Bahn“

Damit die Bahn nicht verzerrt gezeichnet wird, muss das Kontrollkästchen „Keep the same ratio“ im Diagramm-Edit-Dialog aktiviert werden.

horizontale Achse: Variable x mit einer Skalierung von -10E6 bis 12E6; die obere Grenze der Skalierung wird von 10E6 auf 12E6 gesetzt, damit die Achsenbeschriftung den Graphen nicht stört.

erste vertikale Achse: Variable y mit einer Skalierung von -8E6 bis 8E6; rot

Die Coach-Schreibweise -10E6 bedeutet -10*10^6; 6.67E-11 steht für 6,67*10^{-11}

c) Erstellen der Tabellen

Tabelle „Table 1“

<table>
<thead>
<tr>
<th>Höhe</th>
<th>v_x</th>
<th>v_y</th>
<th>v</th>
<th>v_km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
</tr>
<tr>
<td>2771</td>
<td>453.106</td>
<td>-11.2</td>
<td>-7618.1</td>
<td>7618.1</td>
</tr>
<tr>
<td>2772</td>
<td>453.106</td>
<td>-3.6</td>
<td>-7618.1</td>
<td>7618.1</td>
</tr>
</tbody>
</table>

Damit in C2 die aktuelle Höhe der ISS in km berechnet werden kann, muss der Spalte C1 – wenigstens unsichtbar gemacht - die Variable r (diese wird vom Modell in m berechnet) zugeordnet sein. Der Wert der Höhe in km ist die Differenz aus r und Erdradius dividiert durch 1000. Die hier sichtbare blaue Unterlegung der Tabellenzeile kommt daher, dass jetzt gerade der höchste Punkt der Bahn im Scan-Modus angeklickt ist. Falls man nicht in jener Zeile ist, wo v_x den kleinsten Betrag hat, klickt man in der Tabelle in jene Zeile, wo dies der Fall ist. Dann hat man die bestmöglichen Daten dieses wichtigen Punktes der Bahn (Höhe: 253,106km, v: 7618,1m/s=27425km/h) zur Verfügung. Die Spalten C3 und C4 dienen auch dazu, um in C5 den Betrag der Bahngeschwindigkeit v berechnen zu können. Die Umrechnung von v auf v_km/h erfolgt über den Faktor 3,6.

Tabelle „Table 2“

<table>
<thead>
<tr>
<th>t</th>
<th>dx</th>
<th>dy</th>
<th>ds</th>
<th>Sum_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
</tr>
<tr>
<td>2771</td>
<td>2770</td>
<td></td>
<td>-11.18</td>
<td>2770</td>
</tr>
<tr>
<td>2772</td>
<td>2771</td>
<td></td>
<td>-2.61</td>
<td>2771</td>
</tr>
</tbody>
</table>

Aus dieser Tabelle können wir die Umlaufzeit ablesen. Außerdem berechnen wir damit auch schrittweise die Bahnlänge: Der Spalte C2 ist der Flow_x und C3 der Flow_y zugeordnet. Um diese Entfernungen bewegt sich ein Satellit in einer Sekunde (allg. in der Einheit der unabhängigen Variablen) in x-bzw. y-Richtung weiter. Die Schrittweite dx ist das Produkt aus Flow_x und dt; da aber dt bei uns 1 ist, gilt: dx = Flow_x^1*Flow_x; analog gilt: dy = Flow_y. Das zurückgelegte Wegstück ds während des Zeitintervalls dt wird mit Sqrt(dx^2+dy^2) berechnet. In der Spalte C7 werden
alle Wegstücke mit dem mathematischen Operator \textit{Sum(ds)} addiert, wodurch die zu einem bestimmten Zeitpunkt gehörende zurückgelegte Wegstrecke gebildet wird.

Die Nutzung der Tabellen-Statistik

Coachtabellen bieten eine sehr einfache und nützlich statistische Auswertung des enthaltenen Datenmaterials. Sie wird im Tabellen-Kontextmenü unter 'Statistics/Summary' aufgerufen.

Maximal-, Minimal-, Durchschnittswerte und die Summe aller Werte einer in der Tabelle angezeigten Größe werden u.a. angezeigt. Die Frage nach der Geschwindigkeit der ISS im tiefsten und im höchsten Punkt der Bahn kann so ohne einen einzigen Scan-Klick schnellstens beantwortet werden (7736m/s bzw. 7620m/s). Auch die Durchschnittsgeschwindigkeit ist mit 7668m/s sofort herauslesbar.

Diese Tabellen-Statistik stimmt aber nur, wenn die ISS genau einmal die Erde umrundet. Vor der Auswertung der Tabellenstatistik müssen deshalb wahrscheinlich im Tabellen-Kontextmenü über 'Rows/Delete' alle übrigen Zeilen der Tabelle gelöscht werden. Ab welcher Zeile gelöscht werden muss, muss zuerst durch Scannen oder genaueres Studium der Tabellendaten (v_x ist dort gleich Null) festgestellt werden.

c) Aufgaben- und Fragestellungen

Wenn wir das Diagramm neu angelegt haben, müssen wir noch die Erde einzeichnen.

Einzeichnen des „blue planet“:

Die „blaue“ Erde soll als 'Imported background graph' angezeigt werden. Dazu müssen wir diesen Graphen zuerst einmal als normalen Graphen vom Modell zeichnen lassen. Wenn bei \(h_{\text{Start}} \) Null und bei \(v_y_{\text{Start}} \) 7900 eingeben wird, entsteht als Graph genau ein Kreis von der Größe der Erde, da \(v=7900\,\text{m/s} \) die 1.kosmische Geschwindigkeit, die Kreisbahngeschwindigkeit an der Erdoberfläche ist. Mit ein paar Scan-Klicks kann man sich von der Richtigkeit überzeugen.

Durch einen Klick auf die Schaltfläche mit der blauen Diskette wird der Dialog 'Save result as...' aufgerufen und diese aktuelle Bahn mit dem Zusatz „Erdkugel“ abgespeichert. Danach wechseln wir wieder in die ursprüngliche Aktivität und importieren über die Option 'Import background graph .. ' des Diagramm-Kontextmenüs diesen Graphen als Grafik in unser Diagramm, wobei wir ihn vor der Übernahme zuerst noch blau einfärben. Falls etwas schief gelaufen sein sollte, kann man die Aktion im Diagramm-Kontextmenü über 'Delete background graphs / Imported' wieder rückgängig machen.

Wie bei jeder geschlossenen Satellitenbahn wird auch die Bahn der ISS durch die Geschwindigkeit an einem bestimmten Bahnpunkt bestimmt. Während wir die Geschwindigkeit nicht kennen, ist aber der Startpunkt 350 km über der Erde bekannt. Für \(h_{\text{Start}} = 350 \,\text{km} \) variieren wir die Geschwindigkeit; mit der 1.kosmischen Geschwindigkeit \(v = 7900\,\text{m/s} \) steigt die Bahn auf etwa 1070km hoch, wie bei einem Scan-Klick sofort aus der Tabelle 1 ersichtlich ist. Indem wir in mehreren Schritten
die Startgeschwindigkeit reduzieren, erreichen wir schließlich die gesuchten Werte der Bahn.

Die beim Scannen mit dem Diagramm gekoppelten Tabellen liefern folgende Daten:

- $v_y\text{_Start}: \quad 7735\text{\,m/s}$
- Umlaufzeit: \quad 5544\text{\,s} = 92,4\text{\,min} = 1,54\text{\,h}
- Bahn\,länge: \quad 42567\text{\,km lt. Tab.2}

Für die Auswertung der Tabellen-Statistik müssen zuerst alle Zeilen ab 5545 gelöscht werden !!

Die durchschnittliche Geschwindigkeit kann auch als Quotient aus Bahn\,länge und Umlaufzeit ermittelt werden und ergibt: $v_{\text{quer}} = \frac{42567000\text{\,m}}{5544\text{\,s}} = 7678\text{\,m/s}$

In der Statistik der Tabelle 1 (siehe oben) findet man auch einen Durchschnittswert für den Radius der ISS-Bahn: $r_{\text{quer}} = 6768938\text{\,m}$. Mit der Näherung, dass die ISS-Bahn eine Kreisbahn ist, kann v_{quer} dann auch wie folgt berechnet werden:

$$v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{6,67E-11\times5,98E24}{6768938}} = 7678\text{\,m/s}$$
2.2.11 Das radioaktive Zerfallsgesetz

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Begriffe wie Halbwertszeit HWZ oder Halbwertshöhe sind prinzipiell bekannt. Der Zusammenhang zwischen der Halbwertszeit und der Zerfallskonstante wird zahlenmäßig einfach bekannt gegeben, wenn Themen wie Logarithmus und Lösen von Exponentialgleichungen durch Logarithmieren in Mathematik noch nicht behandelt worden sind.

Es gilt allgemein: Zerfallskonstante = Ln(2)/Halbwertszeit. \(\approx 0.693/\text{Halbwertszeit} \)
Aus diesem Zusammenhang sieht man schon, dass die Dimension der Zerfallskonstante der Kehrwert von jener der Zeit, d.h. 1/s ist.

In einem Diagramm soll die Abnahme der Anzahl eines Radionuklids dargestellt und nach dem Einpassen einer mathematischen Funktion formal beschrieben werden.

a) Erstellen des Modells:

In einem neuen Modelfenster soll das abgebildete Modell erstellt werden:

Die unabhängige Variable ist die Zeit \(t \). Sie soll mit einer Schrittweite \(dt = 0.1 \) von 0 bis 100 Sekunden laufen.

Die Bestandgröße \(Nuc \) (Abkürzung für Anzahl der Radionuklide) hat einen Startwert von 100000 und verringert sich im Laufe der Zeit; deshalb hat \(Nuc \) einen Outflow. Der Outflow ist die Änderungsrate von \(Nuc \) und gibt an, wie stark sich die Bestandsgröße \(Nuc \) innerhalb der Zeiteinheit (allg. innerhalb der Einheit der unabhängigen Variablen) ändert. Diese Änderung pro Zeiteinheit hängt von der Zerfallskonstanten und von der aktuellen Anzahl der vorhandenen Radionuklide \(Nuc \) ab, sie ist exakt das Produkt dieser beiden Größen. Für Experten/innen der Differenzialrechnung einsichtig beschriften wir den Outflow mit \(dNuc_nach_dt \), da Coach6 die Schreibweise \(dNuc/dt \) als Variablenname nicht zulässt.

Der Wert der Konstanten \(HWZ \) sei 20 (Sekunden). Die Variable \(\text{Zerfallskonst} \) ist über 0.693/\(HWZ \) oder \(\text{Ln}(2)/HWZ \) definiert. Wähle für sie 4 Dezimalstellen bei ihrer Anzeige aus.

Bei dynamischen Systemen sind vor allem die Flussgrößen interessant. Deshalb nochmals etwas zum Outflow und Prozentrechnen im Allgemeinen: Der Outflow ist die Änderungsrate von \(Nuc \), die Änderung pro Zeiteinheit, die Änderung pro Sekunde. Möchte man aber die Änderung pro Sekunde in Prozent haben, muss die Änderung pro Sekunde durch den Grundwert (hier: \(Nuc \)) dividiert und danach mit 100 multipliziert werden; so erhält man den Wert der Variablen \(\text{prozÄnderung_proSek} \).
Beim Berechnen von oder Sprechen über Prozentsätze muss man immer genau wissen, welches der jeweilige Grundwert (= 100%) ist.

b) Erstellen der Diagramme

Diagramm „Zerfallsgesetz, Zahl der Radionuklide“

horizontal Achse: Variable *t* mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable *Nuc* mit einer Skalierung von 0 bis 100000; rot
zweite vertikale Achse: die Größe *prozÄnderung_proSek* mit einer Skalierung von 0 bis 10; grün

Diagramm „Zerfallsgesetz, Aktivität“

horizontal Achse: Variable *t* mit einer Skalierung von 0 bis 100
erste vertikale Achse: die *Aktivität*, welche nichts anderes als der Outflow der Variablen Nuc ist; der Diagrammsspalte C2 wird zuerst *unsichtbar* der Outflow *dNuc_nach_dt* zugeordnet; in C3 wird dann die Aktivität in der Einheit Becquerel (Bq) angezeigt; die Spalte C3 hat als „Connection‘, „Formula‘; die Formel ist der Name der Spalte von C2 oder kürzer nur „C2“; eine Skalierung von 0 bis 10000; blau

c) Erstellen einer unabhängigen Tabelle „Table 1“

In dieser Tabelle sollen neben dem Zeilenindex (Kontrollkästchen bei „Show row index‘ und „Show column letters‘ aktivieren) die Variablen *t*, *Nuc*, *dNuc_nach_dt* und *prozÄnderung_proSek* angezeigt werden.

d) Aufgaben- und Fragestellungen

Wie erwartet nimmt laut rotem Graph die Anzahl der radioaktiven Kerne ab. Mit ein paar Scans sieht man, dass nach einfacher HWZ der Wert der Variablen Nuc auf die Hälfte und nach der doppelten HWZ auf ein Viertel des Anfangswertes abgesunken ist.

Der zweite, grüne Graph der prozentuellen Änderung pro Sekunde zeigt aber für viele Schülerinnen und Schüler etwas überraschend an, dass diese prozentuelle Änderung pro Sekunde konstant ist. Dabei ist aber hier nichts falsch, sondern damit ist gerade das Typische für den radioaktiven Zerfall deutlich gemacht.

Immer dann, wenn die prozentuelle Änderung einer Größe pro Sekunde konstant ist, kann diese Änderung mit einer Exponentialfunktion beschrieben werden. Das Wort „*prozentuell*“ ist dabei aber ganz wichtig; ohne diesen Zusatz nimmt die Größe nämlich zeitlich „nur“ linear ab.

Dass der rote Graph des Diagramms tatsächlich mit einer Exponentialfunktion beschrieben werden kann, soll über die Option „Analyse/Function-fit‘ des Diagramm-Kontextmenüs gezeigt werden. Dabei muss der fünfte angebotene Funktionstyp \(f(x)=a*\text{Exp}(b*x)+c \) verwendet werden. Der Parameter *c* kann gleich Null und der Parameter *a* kann gleich 100000 gesetzt und anschließend mit einem Häckchen rechts daneben fixiert werden. Das Klicken auf [Auto fit] liefert danach für den Parameter *b*
den Wert -3.5E-02 = -0.035. Wenn die eingepasste Funktion mit einem OK im 'Function-fit'-Fenster in das Diagramm übertragen wird, kann dort in der Spalte C4 der Diagrammtabelle die Gleichung dieser Funktion angeschaut werden. Die Zerfallskonstante ist mit einer Genauigkeit von weit über 10 Dezimalstellen bestimmt worden. Mit einer gerundeten Zerfallskonstanten heißt die Gleichung für die eingepasste mathematische Funktion also:

\[f(x) = 100000 \times \exp(-0.035 \times x) \text{ bzw. } Nuc(t) = 100000 \times \exp(-0.035 \times t) \]

Wenn man nach der Durchrechnung des Modells die angezeigten Zahlenwerte im Modellfenster betrachtet, fällt auf, dass die Werte der Variablen Zerfallskonst und prozÄnderung_pro_Sek dieselben Ziffernfolgen enthalten und sich nur durch einen Faktor 100 unterscheiden: die Zerfallskonstante hat den Wert 0.0347 und die prozentuelle Änderung pro Sekunde den Wert 3.47. Es gilt offensichtlich folgender Zusammenhang:

Man erhält den Zahlenwert der Änderungskonstanten der beschreibenden Exponentialfunktion einer Größe, wenn man die prozentuelle Änderung pro Sekunde durch 100 dividiert. Nimmt diese Größe im Laufe der Zeit ab, muss diese Änderungskonstante negativ, bei einer Zunahme aber positiv in den Exponenten der Exponentialfunktion eingesetzt werden.

Verallgemeinerungen auf das prozentuelle Wachstum

Die Erkenntnisse, die wir beim Studium des radioaktiven Zerfalls gemacht haben, kann man analog auch auf das konstante prozentuelle Wachstum übertragen. Als Beispiel betrachten wir den Verbrauch elektrischer Energie, der längerfristig pro Jahr um 4% zunimmt; die Änderungs- oder Wachstumskonstante ist dann 4/100 = 0.04; die Gleichung für das Wachstum der Energie heißt dann: \(E(t) = E_o \times \exp(+0.04 \times t) \), wenn \(E_o \) der Ausgangswert des Energieverbrauchs ist.

Beim Wachstum ist die Verdoppelungszeit die analoge Größe zur Halbwertszeit beim Zerfall. Wenn beim radioaktiven Zerfall die Zerfallskonstante gleich \(\ln(2) \) dividiert durch die Halbwertszeit ist, dann gilt analog, dass die Änderungs- oder Wachstumskonstante gleich \(\ln(2) \) dividiert durch die Verdoppelungszeit ist.

Umgekehrt ist die Verdoppelungszeit gleich \(\ln(2) \) dividiert durch die Wachstumskonstante. In unserem Energie-Beispiel mit 4%igem jährlichen Wachstum ist die Wachstumskonstante 0.04 und die Verdoppelungszeit \(\ln(2)/0.04 = 0.693/0.04 = 17.3 \) Jahre.

<table>
<thead>
<tr>
<th>Prozentuelle Abnahme Radioaktiver Zerfall</th>
<th>Prozentuelles Wachstum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWZ ... Halbwertszeit</td>
<td>VDZ ... Verdoppelungszeit</td>
</tr>
<tr>
<td>ZK ... Zerfallskonstante</td>
<td>WK ... Wachstumskonstante</td>
</tr>
<tr>
<td>AK ... Abnahmekonstante</td>
<td>pWinZE ... prozentuelles Wachstum in der Zeiteinheit</td>
</tr>
<tr>
<td>pAinZE ... prozentuelle Abnahme in der Zeiteinheit</td>
<td></td>
</tr>
<tr>
<td>LN(2) = natürlicher Logarithmus von 2 = 0,0693</td>
<td></td>
</tr>
<tr>
<td>HWZ = LN(2)/ZK oder HWZ = LN(2)/AK</td>
<td>VDZ = LN(2)/WK</td>
</tr>
<tr>
<td></td>
<td>VDZ = 100*LN(2)/pWinZE</td>
</tr>
</tbody>
</table>
ZK = LN(2)/HWZ oder AK = LN(2)/HWZ
ZK = pAinZE/100 od. AK = pAinZE/100
pAinZE = ZK*100 od. pAinZE = AK*100
WK = LN(2)/VDZ
WK = pWinZE/100
pWinZE = WK*100

Auch das zweite Diagramm „Zerfallsgesetz, Aktivität“ gibt interessante Einblicke:

Bei gleicher Halbwertszeit haben beide Diagramme auch die gleiche Zerfallskonstante. Diese an sich logische Tatsache wird eventuell durch unterschiedliche Skalierungen der Achsen überdeckt, könnte aber durch die Bestimmung dieser Konstanten mit Hilfe der Option „Analyse/Function-fit“ des Diagramm-Kontextmenüs überprüft oder nachgewiesen werden.

Wenn man das zweite Diagramm bei einer Simulation der Halbwertszeiten betrachtet, wird ersichtlich, dass die Aktivitäten umso kleiner sind, je größer die Halbwertszeit ist. Bei kurzen Halbwertszeiten ist die Anfangsaktivität besonders groß, im Laufe der Zeit nimmt die Aktivität dann aber besonders stark ab.

Die Abhängigkeit der aktuellen Aktivität von der Halbwertszeit kann man natürlich auch formal anschreiben:

\[\text{Aktivität} = \text{Outflow} = \frac{dNuc}{dt} = \text{Zerfallskonstante} \times Nuc = \frac{\text{Ln}(2) \times Nuc}{\text{Halbwertszeit}} \]

Dabei ist Nuc die Zahl der aktuell vorhandenen Radionuklide und Ln(2) der natürliche Logarithmus von 2. Die Halbwertszeit muss in Sekunden eingesetzt werden.

2.2.12 Das prozentuelle Wachstum

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Im selben Projekt, in dem das Zerfallsgesetz untersucht und visualisiert wird, könnte in einer zweiten Aktivität das konstante prozentuelle Wachstum behandelt werden. Die Analogie dieser beiden Prozesse wurde im Kapitel über das Zerfallsgesetz detailliert behandelt.

Mit einem Modell, bei dem das prozentuelle Wachstum pro Zeiteinheit eingegeben wird, soll graphisch die Abhängigkeit der Verdopplungszeit vom Prozentsatz verdeutlicht werden.
a) Erstellen des Modells:

In einem neuen Modellfenster soll das abgebildete Modell erstellt werden:

Die unabhängige Variable \(t \) habe die Zeiteinheit ZE. Sie soll mit einer Schrittweite \(dt=0.01 \) von 0 bis 20 laufen.

Die Bestandgröße \(N \) kennzeichnet die Zahl einer beliebigen Größe, deren Anfangswert über die Konstante \(\text{Start}_N \) eingestellt wird. Die Variable \(\text{VD}_\text{Wert} \) enthält den verdoppelten Startwert.

\(N \) soll anwachsen, deshalb bekommt diese Bestandsgröße einen Inflow. Der Inflow ist die Änderungsrate von \(N \) und gibt an, wie stark sich die Bestandsgröße \(N \) innerhalb der Zeiteinheit ändert. Diese Änderung pro Zeiteinheit hängt von der Konstanten \(\text{prozZunahme}_\text{proZE} \), der prozentualen Zunahme pro Zeiteinheit, und vom aktuellen Wert von \(N \) ab (analog zu: Anteil ist Prozentsatz mal Grundwert durch 100). Auf die Beschriftung dieses Inflows kann man bei jüngeren Schülern auch verzichten. Für Experten/innen der Differenzialrechnung wäre \(\frac{dN}{dt} \) die exakte Beschriftung; da aber Coach6 diese Schreibweise für Modellvariablen nicht zulässt, wurde \(dN_{\text{nach}_dt} \) verwendet.

Während sich der Wert des Inflows bei der Durchrechnung des Modells andauernd verändert, ist der Quotient aus Inflow und aktuellem Wert von \(N \) konstant; dies ist nämlich die Wachstumskonstante \(\text{WachstumKonst} \). Die Verdoppelungszeit wird nach den Überlegungen im Projekt Zerfallsgesetz analog zur Halbwertszeit als Quotient aus \(\ln(2) \) und der Wachstumskonstanten definiert.

Wenn man bei nicht all zu komplexen Formeln die beteiligten Größen kennt, helfen oft Dimensionsüberlegungen zur Findung des richtigen formalen Zusammenhangs. Dies soll hier verdeutlicht werden:

Die Verdoppelungszeit hat als Dimension ZE (Zeiteinheit), die Wachstumskonstante hat die Dimension \(1/\text{ZE} \) und der natürliche Logarithmus von 2 ist eine Zahl, ist also dimensionslos. Aus Dimensionsgründen kann die Verdoppelungszeit nur durch einen Bruch festgelegt sein, bei dem die Wachstumskonstante im Nenner steht. Ein Produkt aus Wachstumskonstante und Ln(2) ergäbe ebenfalls eine falsche Dimension für die Verdoppelungszeit.

b) Erstellen der Diagramms „Prozentuelles Wachstum“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 20
erste vertikale Achse: Variable \(N \) mit einer Skalierung von 50 bis 300; rot
zweite vertikale Achse: Variable \(\text{VD}_\text{Wert} \) mit einer Skalierung von 50 bis 300; grün

c) Erstellen einer unabhängigen Tabelle „Table 1“

In dieser Tabelle sollen neben dem Zeilenindex (Kontrollkästchen bei Show row index und Show column letters aktivieren) die Variablen \(t, N, 200 \) angezeigt werden.
Hier ist das Simulationsdiagramm zu sehen, aus dem mit ein paar Scans die Verdoppelungszeit für einzelne Prozentsätze herausgelesen werden können. Überflüssig ist, dass auch der Wert 200 bei jeder Durchrechnung im Diagramm überschrieben wird.

Auch das Modellfenster zeigt nach jeder Durchrechnung die Verdoppelungszeit an. Nach der Formelzusammenstellung im Projekt Zerfallsgesetz kann sie für jede prozentuelle Zunahme auch wie folgt berechnet werden:

\[
\text{Verdoppelungszeit} = \frac{\ln(2) \times 100}{\text{zeitliches prozentuelles Wachstum}} = \approx \frac{69,3}{\text{zeitliches prozentuelles Wachstum}}
\]

Bei einem zeitlichen Wachstum von 1 % dauert es also knapp 70 Zeiteinheiten bis zur Verdoppelung der betrachteten Größe.

2.2.13 Die Radioaktive Zerfallskette

Zusatzangebot: Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Im Bereich der Radioaktivität hat man es nicht nur mit dem Zerfall von Atomkernen zu tun, bei denen die Tochterkerne gleich stabile Kerne sind, sondern die Umwandlung in stabile Kerne erfolgt oft über ganze Zerfallsketten.

Wie der radioaktive Zerfall über eine Zerfallskette prinzipiell ablaufen könnte und wie die Aktivität dabei in Abhängigkeit von den Halbwertszeiten abnimmt, soll in einem Modell untersucht werden, in dem sich eine Menge radioaktiver Kerne über zwei instabile Zwischenkerne in eine Sorte stabiler Atomkerne verwandelt.

Der Zusammenhang von Halbwertszeit und Zerfallskonstante ist hier als bekannt vorausgesetzt; im Projekt Zerfallsgesetz ist dieser detaillierter behandelt.
Mit einem recht einfachen Coach-Modell kann man Diagramme erzeugen, welche in einer Tabellenkalkulation nur sehr schwer und unter größtem Zeitaufwand zu programmieren sind.

Im ersten Diagramm soll die zeitliche Änderung der Nuklidzahlen dargestellt werden, im zweiten die zeitliche Änderung der Aktivitäten der einzelnen Nuklide und deren Summe.

Unter der Aktivität versteht man die Anzahl der Zerfälle pro Sekunde. Da wir als Zeiteinheit 1 Sekunde verwenden, ist bei uns die Aktivität exakt der Zahlenwert des Outflows des jeweiligen Radionuklids. Verwendet man als Einheit der unabhängigen Modell-Variablen z.B. 1h, so wäre die Aktivität um den Faktor 3600 größer als der Zahlenwert des Flows.

a) Erstellen des Modells:

Die unabhängige Modell-Variable ist die Zeit t. Sie soll mit einer Schrittweite dt=0.1 von 0 bis 100 Sekunden laufen.

Setze als erstes die Symbole der vier Bestandsgrößen N_Nuc1 bis N_Nuc4 ins Modelfenster.

Die Bestandgröße N_Nuc1 (Abkürzung für Anzahl der Radionuklide 1) hat einen Outflow, da die Anzahl dieser Kerne durch Kernumwandlungen abnehmen wird. Der Outflow ist die Änderungsrate von N_Nuc1 und gibt an, wie stark sich die Bestandsgröße N_Nuc1 innerhalb der Zeiteinheit ändert. Diese Änderung pro Zeiteinheit hängt von der Zerfallskonst1 und von der aktuellen Anzahl der vorhandenen Radionuklide N_Nuc1 ab, sie ist exakt das Produkt dieser beiden Größen. Weil die Zeiteinheit 1 Sekunde ist und die physikalische Größe Aktivität als die Zahl der Zerfälle pro Sekunde definiert ist, stellt dieser Outflow gleichzeitig die Aktivität A1 dar. Damit die Beschreibung und die Zahlenwerte eines Flows im Modellfenster angezeigt werden, sind in seinem Eigenschaftsfenster zwei Häkchen nötig, oben bei „Show Label“ und unten neben der Einstellung der Dezimalstellen bei „Show Digital Display“.

Der Wert der Konstanten HWZ_1 sei 15. Die Variable Zerfallskonst1 ist über 0.693/HWZ_1 oder Ln(2)/HWZ_1 definiert.

Für die zwei radioaktiven Tochterkerne gilt analoges.
Die Verkettung der Bestandsgrößen kann ganz einfach gemacht werden. Der Outflow $A1$ der Bestandsgröße N_{Nuc1} ist gleichzeitig der Inflow der Bestandsgröße N_{Nuc2}; entsprechendes gilt für die Flows zwischen den anderen Bestandsgrößen. Der Zahlenwert von N_{Nuc2} wird so vom Inflow $A1$ und vom Outflow $A2$ bestimmt.

b) Erstellen der Diagramme

Diagramm „Zahl der Kerne einer Zerfallskette“

horizontale Achse: Variable t mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variablen N_{Nuc1}, N_{Nuc2}, N_{Nuc3}, mit einer Skalierung von 0 bis 100000 in den gleichen Farben wie im Modellfenster
zweite vertikale Achse: die Variable N_{Nuc4} schwarz und N_{gesamt} rot in der selben Skalierung von 0 bis 100000. N_{gesamt} soll die Summe der aktuell vorhandenen radioaktiven Kerne anzeigen.

Diagramm „Aktivitäten in einer Zerfallskette“

horizontale Achse: Variable t mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variablen $A1$, $A2$ und $A3$ mit einer Skalierung von 0 bis 5000 in den gleichen Farben wie im Modellfenster
zweite vertikale Achse: die Variable A_{gesamt} in einer Skalierung von 0 bis 10000; rot. A_{gesamt} soll die Summe der aktuell vorhandenen Aktivitäten anzeigen.

c) Erstellen einer unabhängigen Tabelle „Table 1“

In dieser Tabelle sollen neben dem Zeilenindex (Kontrollkästchen bei ‚Show row index‘ und ‚Show column letters‘ aktivieren) die Variablen t, N_{Nuc1}, $A1$, $A2$, $A3$ und N_{Nuc4} angezeigt werden.

d) Aufgaben- und Fragestellungen

Dieses Aktivitäts-Diagramm entsteht mit Halbwertszeiten von 15, 5 und 10 Sekunden. Beachte, dass der rote Graph der Gesamtaktivität einen doppelt so großen Maximalwert auf der zweiten vertikalen Achse hat.

Je kürzer die Halbwertszeit ist, desto größer ist die Zerfallskonstante und desto größer ist auch die Aktivität, welche aber zusätzlich noch von der Anzahl der vorhandenen radioaktiven Kerne abhängt.

\[
\text{Aktivität}_2 = \text{Zerfallskonstante}_2 \times \text{Nuklid}_2-\text{Anzahl} = \frac{\ln(2) \times \text{Nuklid}_2-\text{Anzahl}}{\text{Halbwertszeit}_2}
\]

Bemerkung: \(\ln(2)\) heißt natürlicher Logarithmus von 2; die Halbwertszeit muss in Sekunden und die Zerfallskonstante in der Einheit pro Sekunde eingesetzt werden!

2.2.14 Kaffee kühlt ab

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:
Eine Tasse heißer Kaffee kühlt ab, indem nach allen Richtungen Wärmeenergie abgestrahlt wird. Die Tasse steht also nicht auf dem Tisch, sondern wird von einer Halterung mit einem Stativ getragen. Diese Bemerkung wird dann interessant, wenn wir versuchen, die Parameter unseres Modells mit Hilfe einer Messung zu optimieren oder an eine spezielle Kaffeetasse (Form, Material) anzupassen.

Eine sog. spezifische Abstrahlungsleistung ist die entscheidende Größe und habe die Dimension \(\text{J/(s*K*kg)}\). Sie gibt also an, wie viel Energie pro Sekunde abgestrahlt wird, wenn die Temperaturdifferenz zur Umgebung 1 K und die Kaffeemenge 1 kg ist.

Mache ein Modell und ein Diagramm, um diesen Abkühlungsvorgang genauer untersuchen zu können.

a) Erstellen des Modells:
Die unabhängige Variable des Modells ist die Zeit \(t \). Mit einer Schrittweite \(dt = 1 \) soll \(t \) von 0 bis 3600 s laufen.

Folgende Konstanten spielen hier eine Rolle:
- Die Kaffeemasse \(m \), die spezifische Wärmekapazität des Wassers \(Cp_{\text{Wasser}} \), die Umgebungstemperatur \(Temp_{\text{Umgebung}} \), die Starttemperatur des Kaffees \(Temp_{\text{Kaffee Start}} \) und die spezifische Abstrahlungsleistung \(spezAbstrahlLeist \). Wie man daraus \(P \), die abgestrahlte Energie pro Sekunde, berechnet, verraten die Dimensionen dieser Größen: Aus \(J/(s*K*kg) \) wird \(J/s \), wenn man die erste Größe mit der Masse und mit einer Temperatur multipliziert; diese Temperatur ist die Temperaturdifferenz zwischen Kaffee und Umgebung, wie einem das physikalische Gespür oder der physikalische Sachverstand sagt. Die Bestandsgröße \(Temp_{\text{Kaffee}} \) hat einen Outflow, da sie ja im Laufe der Zeit abnehmen soll. Ein Flow ist, wenn die Zeit wie hier die unabhängige Variable ist, eine Änderung pro Sekunde, hier ist er eine Temperaturänderung pro Sekunde; diese erhält man, wenn man \(P \) durch das Produkt aus Masse und spez. Wärmekapazität dividiert.

Starttemperatur des Kaffees \(Temp_{\text{Kaffee Start}} \) und die spezifische Abstrahlungsleistung \(spezAbstrahlLeist \). Wie man daraus \(P \), die abgestrahlte Energie pro Sekunde, berechnet, verraten die Dimensionen dieser Größen: Aus \(J/(s*K*kg) \) wird \(J/s \), wenn man die erste Größe mit der Masse und mit einer Temperatur multipliziert; diese Temperatur ist die Temperaturdifferenz zwischen Kaffee und Umgebung, wie einem das physikalische Gespür oder der physikalische Sachverstand sagt. Die Bestandsgröße \(Temp_{\text{Kaffee}} \) hat einen Outflow, da sie ja im Laufe der Zeit abnehmen soll. Ein Flow ist, wenn die Zeit wie hier die unabhängige Variable ist, eine Änderung pro Sekunde, hier ist er eine Temperaturänderung pro Sekunde; diese erhält man, wenn man \(P \) durch das Produkt aus Masse und spez. Wärmekapazität dividiert.

Bei der Lösung dieser Aufgabe im Textmodus ist man fast näher an den bekannten Formeln der Physik. Als erstes wird die Energie berechnet, die im Zeitintervall \(dt \) abgestrahlt wird. Daraus entsteht durch Umformen der Formel \(dQ = Cp*m*dT \) jene Temperaturänderung des Kaffees, um die er pro Zeitintervall \(dt \) kälter wird.

b) Erstellen des Diagramms „Kaffee kühlt ab“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 1200 (=20 min)

erste vertikale Achse: Variable \(Temp_{\text{Kaffee}} \) mit einer Skalierung von 0 bis 90; rot

d) Aufgaben- und Fragestellungen

Dass bei einer Variation der Kaffeemenge die Temperaturabnahme zeitlich gleich abläuft, stimmt mit unseren Kaffee-Trinkfahrten nicht so ganz überein. Dies könnte experimentell wahrscheinlich nur bestätigt werden, wenn man mit der Kaffeemenge gleichzeitig auch die Tasse bei gleicher Form vergrößert und verkleinert. Wenn wir in derselben Tasse die Kaffeemenge variieren, dann treten auch Veränderungen der Abstrahlverhältnisse auf, wodurch die spezifische Abstrahlleistung nicht konstant bleibt.

Welcher Temperatur sich die Kaffeetemperatur annähert, wird bei einem Blick aufs Diagramm ebenfalls gleich klar.

Warum sich die Temperaturabnahme im Laufe der Zeit verlangsamt, kann sicher auch schnell geklärt werden.

Der Zusammenhang zwischen der Steigung des Temperatur-Graphen und der Temperaturabnahmekonstante b, welche durch das Einpassen einer Exponentialfunktion gefunden wird, kann hier wieder einmal bei der Kaffeetemperatur von z.B. 30°C und 60°C überprüft werden. Außerdem wird damit nachgewiesen, dass die Temperaturdifferenz zur Umgebung die Steigung des Temperatur-Graphen bestimmt:

Die Temperaturabnahmekonstante $b = -3.6\times10^{-3} = 0.0036\ \text{s}^{-1}$.

<table>
<thead>
<tr>
<th>Temp_Kaffee [°C]</th>
<th>Delta_Temp [°C]</th>
<th>Slope [°C/s]</th>
<th>b*Delta_Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td>-0.04</td>
<td>-0.0036*10=-0,036</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>-0.14</td>
<td>-0.0036*40=-0,144</td>
</tr>
</tbody>
</table>

2.2.15 Die Entladung eines Kondensators

Zusatzangebot:

Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Ein geladener Kondensator entlädt sich über einen ohmschen Widerstand.

Untersuche mit Hilfe eines Modells und eines Diagramms diesen Vorgang.

a) Erstellen des Modells:

Die unabhängige Variable des Modells ist die Zeit t. Mit einer Schrittweite $dt = 0.001$ soll t von 0 bis 1 laufen.

Die Zahlenwerte folgender Konstanten sind im unten abgebildeten Modell ersichtlich: Die Spannung U_{Start} in Volt vor Beginn der Entladung, der Widerstand R in Ohm und die Kapazität C in Farad.
Die Variable \(U_C \) enthält die aktuelle Spannung am Kondensator, die auf Grund der elektrischen Ladungen im Kondensator herrscht.

Die Ladung \(Q \) ist die Bestandsgröße dieses Modells und hat einen Outflow, damit die Ladung im Laufe der Zeit durch einen Ladungsausgleich sinkt. Dieser Outflow, die Ladungsänderung pro Sekunde, ist nichts anderes als der Entladestrom \(I \).

Damit die einzelnen Symbole des Modells auch formal richtig verknüpft werden können, müssen ein paar Formeln der Elektrizitätslehre richtig angewendet werden:

\[
I = \frac{dQ}{dt}; \quad Q = C \times U; \quad U = R \times I.
\]

Im Textmodus würde das Modell etwa so aussehen.

Entladeprozess

b) Erstellen des Diagramms „Entladung eines Kondensators“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 1

erste vertikale Achse: Variable \(U_C \) mit einer Skalierung von 0 bis 120; grün

zweite vertikale Achse: Variable \(I \) mit einer Skalierung von 0 bis 0.120; rot

Bei größeren Änderungen des ohmschen Widerstandes muss eventuell die Skalierung für die Anzeige des Entladungsstromes angepasst werden.

c) Aufgaben- und Fragestellungen

Der Einfluss des Widerstandes, der Kapazität oder der Start-Spannung auf den zeitlichen Ablauf des Ladevorganges kann einfach durch Simulationen leicht untersucht werden.

Als Expertin bzw. Experte für Exponentialfunktionen bestimmen wir mit der 'Function-fit'-Option die Änderungskonstante für die Graphen der Kondensatorspannung und des Entladestromes. Dabei können wir feststellen, dass diese bei beiden Graphen übereinstimmt. Diese Tatsache ist uns bei der Formulierung der Funktionsgleichung für den Aufladevorgang eines Kondensators hilfreich. Es gilt hier:

\[
U_C = 100 \times \text{Exp}(-5.129 \times t) \quad \text{und} \quad I(t) = 0.05 \times \text{Exp}(-5.129 \times t)
\]
Warum die Graphen mit zunehmender Zeit flacher werden, zählt zu den Standardfragen, welche auf unterschiedlichsten Niveaus beantwortet werden können.

2.2.16 Das Aufladen eines Kondensators

Zusatzangebot:
Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:
Ein Kondensator bekannter Kapazität wird an eine Gleichspannungsquelle ange- schlossen und über einen ohmschen Widerstand geladen.

Untersuche mit Hilfe eines Modells und eines Diagramms diesen Vorgang.

a) Erstellen des Modells:

Die unabhängige Variable des Modells ist die Zeit \(t \). Mit einer Schrittweite \(dt = 0.001 \) soll \(t \) von 0 bis 1 laufen.

Die Zahlenwerte folgender Konstanten sind im abgebildeten Modell ersichtlich: Die angelegte Spannung \(U \) in Volt, der elektr. Widerstand \(R \) in Ohm, die Kapazität \(C \) in Farad, und die Ladung \(Q_{\text{Start}} \) des Kondensators am Beginn des Ladevorganges.

Die Variable \(U_C \) enthält die aktuelle Spannung am Kondensator, die sich auf Grund der elektrischen Ladungen im Kondensator als Gegenspannung zur von außen angelegten Spannung \(U \) aufbaut.

Die Ladung \(Q \) ist die Bestandsgröße dieses Modells und hat einen Inflow, damit die Ladung im Laufe der Zeit ansteigt. Der Inflow, die Ladungsänderung pro Sekunde, ist nichts anderes als der Ladestrom \(I \).

Damit die einzelnen Symbole des Modells auch formal richtig verknüpft werden können, müssen ein paar Formeln der Elektrizitätslehre richtig angewendet werden:

\[I = \frac{dQ}{dt}; \quad Q = C \cdot U; \quad U = R \cdot I. \]

Dass beide Spannungen den Ladestrom \(I \) beeinflussen, ist aus dem abgebildeten Grafitikmodus-Modell wegen der Connector-Pfeile ersichtlich. Die Differenz dieser zwei Spannungen ist die Ursache für den Ladevorgang.
b) Erstellen des Diagramms „Aufladen eines Kondensators“

horizontale Achse: Variable t mit einer Skalierung von 0 bis 1
erste vertikale Achse: Variable U_C (grün) und Konstante U (blau) mit einer Skalierung von 0 bis 120
zweite vertikale Achse: Variable I mit einer Skalierung von 0 bis 0.120; rot

d) Aufgaben- und Fragestellungen

Der Einfluss des Widerstandes, der Kapazität oder der äußeren angelegten Spannung auf den zeitlichen Ablauf des Ladevorganges kann einzeln durch Simulationen leicht untersucht werden.

Deshalb gilt für die die Kondensatorspannung folgende Gleichung:

$$U_C = 100*(1 - \exp(-5.013*t)).$$

2.2.17 Der Astronaut altert langsamer, wenn …

Zusatzangebot:

Arbeitsblatt/Protokollvorlage.

Kurzbeschreibung der Aufgabenstellung:

Im Raumschiff geht die Uhr langsamer; während auf der Erde 1 Stunde vergeht, vergehen in der Rakete nur $\sqrt{1 - \frac{v^2}{c^2}}$ Stunden, wobei diese Zeit in der Rakete entscheidend von der Raketengeschwindigkeit abhängt.

Mache ein Modell und stelle in einem Diagramm die Alterung des Astronauten gegenüber der Alterung des Zwillings auf der Erde dar. Der Prozentsatz, der die Fahrgeschwindigkeit v mit der Lichtgeschwindigkeit c vergleicht, soll frei wählbar sein.
a) Erstellen des Modells:

Die unabhängige Variable des Modells ist die Zeit \(t \) in Sekunden. Mit einer Schrittweite \(dt = 1E5 \) soll \(t \) von 0 bis 7E8 laufen. 1E5s sind etwa 28 Stunden.

Die Zahlenwerte folgender Konstanten sind im abgebildeten Modell ersichtlich: Der Prozentsatz \(p\text{_von\text{_}C} \), über den die Fahrgeschwindigkeit \(v \) der Rakete eingestellt wird; die Lichtgeschwindigkeit \(C \), deren Zahlenwert aus der Liste der angebotenen Konstanten stammt; die Konstante Jahr1, welche die Anzahl der Sekunden pro Jahr angibt.

Das Modell kann auch im Textmodus erstellt werden. Für den Abbruch der Durchrechnung nach 20 Jahren \((t20J)\) ist eine Befehlszeile im linken Anweisungsteil des Modellfensters nötig.

b) Erstellen des Diagramms „Alterungsverhältnis der Zwillinge“

horizontale Achse: Variable Alterung_auf_Erde_x mit einer Skalierung von 0 bis 25

erste vertikale Achse: Variable AlterungAstronaut_y mit einer Skalierung von 0 bis 25; rot. Die Einheiten sind jeweils Jahre. Im Diagramm sollte nicht nur das Gitternetz eingeschaltet sein, sondern auch ‘Keep the same ratio’ aktiviert sein.
c) Erstellen einer Tabelle „Table 1“
Diese könnte die Variablen t, Alterung_auf_Erde_x, AlterungAstronaut_y und ev. auch v enthalten. Fürs exakte Scannen ist eine Tabelle immer hilfreich.

d) Aufgaben- und Fragestellungen

Je schneller die Rakete fährt, je größer die Geschwindigkeit in Prozent der Lichtgeschwindigkeit ist, desto größer sind auch die Alterungsunterschiede der Zwillinge.

Für p_von_C = 0 ist der Graph genau 45° geneigt, das Verhältnis des Alterns der Zwillinge ist 1:1. Wenn v gleich 95% von C ist, altert der Astronaut ca. 6 Jahre, während der Zwilling auf der Erde 20 Jahre älter wird. Das Verhältnis des Alterns ist ca. 6 : 20 = 3 : 10 = 0.3 : 1.

Durch Scannen und gezieltes Probieren lassen sich so noch zahlreiche Fragen beantworten. Siehe dazu auch das Arbeitsblatt bzw. die Protokollvorlage.
3 ARBEITSBLÄTTER / PROTOKOLLVORLAGEN UND PROTOKOLLE

Lehrerinnen und Lehrer haben die Möglichkeit, diese Arbeitsblätter im Downloadbereich dieser Studie als Word-Dokument herunter zu laden und den Bedürfnissen in ihrem Unterricht anzupassen.

Die hier vorgestellten Arbeitsblätter sind fast alle zu umfangreich. Das Herauslöschen von Fragestellungen und Arbeitsaufträgen geht aber bekanntlich viel schneller als das Hinzufügen.

Manche Arbeitsblätter enthalten auch Lückentexte. Sie beginnen mit einem fetten und kursiven „Vervollständige:“. Im nachfolgenden Text beginnen Textabschnitte mit zwei fetten und kursiven \(\Psi \Psi \)-Zeichen und enden mit einem fetten und kursiven \(\Psi \)-Zeichen. Der Text zwischen diesen \(\Psi \)-Zeichen müsste vor der Überlassung des Datenfiles des Arbeitsblattes an die Schülerinnen und Schüler gelöscht werden, damit diese bei den drei fetten und kursiven \(\Psi \)-Zeichen etwas einsetzen müssen. Beim Ausfüllen des Lückentextes markieren die Schüler die Kette der \(\Psi \)-Zeichen - es müssten drei sein - und schreiben den ihrer Meinung nach richtigen Text in die „Lücke“. Automatisch wird dann dieser eingefüllte Text fett und kursiv formatted.

Die Arbeitsblätter sollen von den Schülerinnen und Schülern als Protokollvorlagen verwendet werden.

3.1 Arbeitsblätter / Protokollvorlagen der Mathematik-Projekte

3.1.1 Umfang und Fläche eines Kreises abhängig vom Radius

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Untersuche die Abhängigkeit des Umfanges und des Flächeninhaltes eines Kreises von seinem Radius mit einem Modell.

Weitere Tipps und Infos:

Zu dieser Aufgabe gibt es einen Demofilm „So passe ich eine math. Funktion in den Datengraphen der Kreisfläche ein“.

a) Zum Modell

Lege ein Projekt und eine Aktivität an. Öffne das Modellfenster, arbeite im Grafikmodus und erstelle das folgende Modell: Verwende den Radius \(r \) als unabhängige Variable und zeige diese auch im Modellfenster an (Haken im Kontrollkästchen bei

\textbf{b) Zum Diagramm „Kreis: U und A als Funktion von r“:}

horizontal Achse: unabhängige Variable r mit einer Skalierung von 0 bis 10

erste vertikale Achse: Variable U mit einer Skalierung von 0 bis 100; blau

zweite vertikale Achse: Variable A mit einer Skalierung von 0 bis 100; rot

\begin{enumerate}
\item Mein eigenes Modellfenster:
Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

\item Mein Diagramm „Kreis: U und A als Funktion von r“:
Löse im Scan-Modus folgende \textbf{Fragen}:

(1) Bei welchem Radius sind die Maßzahlen von Umfang und Flächeninhalt gleich?

(2) Zeige, dass man durch Gleichsetzen der Berechnungsterme für Fläche und Umfang zum selben Ergebnis kommt.

(3) Was passiert mit dem Umfang, wenn man den Kreisradius verdreifacht?

(4) Wie verändert sich der Flächeninhalt, wenn man den Kreisradius verdoppelt?

\textbf{Vervollständige}: Der Umfang ist $\Psi\Psi$ direkt proportional Ψ zum Radius.

3) Mein „Function-fit‘-Fenster für die Einpassung einer allgemeinen quadratischen Funktion in den Graphen der Fläche:
Setze die Koeffizienten b und c exakt Null und fixiere diese durch einen Haken im Kontrollkästchen rechts daneben.

\textbf{Frage}: Warum ist der Koeffizient a gleich 3.14?

3.1.2 Radius und Fläche eines Kreises abhängig vom Umfang

\textbf{Arbeitsteam:} Ort und Datum der Durchführung:

\textbf{Kurzbeschreibung der Aufgabenstellung:}
Als eine Art Umkehraufgabe soll die Abhängigkeit des Radius und der Fläche eines Kreises von seinem Umfang mit Modell und Diagramm untersucht werden.
Weitere Tipps und Infos:
Es steht ein kommentierter Demofilm „So mache ich eine Coach6-Tabelle zur Kreisuntersuchung“ zur Verfügung.

a) Zum Modell

b) Zum Diagramm „Kreis: Rad und A als Funktion von U“:

horizontalen Achse: unabhängige Variable U mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable Rad mit einer Skalierung von 0 bis 20; blau
zweite vertikale Achse: Variable A mit einer Skalierung von 0 bis 200; rot.

c) Zur unabhängigen Tabelle „Table 2“:

Neben dem Scanning in Diagrammen helfen Tabellen bei der Analyse. Angenehm ist, dass im Scan-Modus auch die Anzeigen im Diagramm mit denen in der Tabelle gekoppelt sind. Das linke Bild zeigt, dass bei der unabhängigen Variablen U die Schrittweite 1 eingestellt ist. Der Umfang U soll so von 0 bis 100 variieren. In der Spalte C3 (Delta Rad) wird die Änderung des Radius Rad berechnet, wenn der Umfang jeweils um 1 m größer wird. Dazu muss bei 'Create/Edit table' für C3 bei 'Connection', 'Formula' angewählt und bei der Eingabe der nötigen Formel die mathematische Funktion Delta(C2) verwendet werden.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster 'undocked' ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Kreis: Rad und A als Funktion von U“:
Fragen:

(1) Um wie viel ändert sich der Radius, wenn man den Umfang eines Kreises von 1m auf 2m vergrößert (schaue in der Tabelle nach)?

(2) Wenn man den Umfang eines Kreises von 50m auf 51m bzw. von 40 000 000m auf 40 000 001m (ungefährer Erdumfang in m) erhöht, verändert sich der Radius dieser Kreise ebenfalls um genau 15,92 cm. Eigentlich erwarten wir, dass sich der Radius umso weniger verändert, je größer der Umfang schon ist. Zeige, dass man durch Gleichsetzen der Berechnungsterme für Fläche und Umfang zum selben Ergebnis kommt.

3) Untersuchung des Rad-Graphen:

(1) Die Einpassung einer linearen Funktion mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen Rad liefert für den Parameter a einen Wert von 0.16. Vergewissere dich von dieser Behauptung und erkläre, warum sich gerade diese Steigungszahl ergibt. (Siehe auch Frage davor)

(2) Die mit Analyse/Slope des Diagramm-Kontextmenüs für den Graphen Rad ermittelte Steigungszahl hat ebenfalls den Wert: …..

(3) Rechne mit Variablen weiter, bis \(r' = r + 0.1592 \) dasteht:
\[
U' = U + 1; \quad r = \frac{U}{2\pi}; \quad r' = \frac{U'}{2\pi} = \frac{(U + 1)}{2\pi} = ...
\]

4) Mein „Function-fit“-Fenster zur Einpassung einer allgemeinen Quadratfunktion in den Flächengraphen:

Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen A eine mathematische Funktion ein; wähle dazu bei „Column“ die Variable A aus; verwende den dritten angebotenen Funktionstyp, obwohl er auf den ersten Blick überhaupt nicht passt; drücke die Schaltfläche [Auto fit] und du wirst angenehm überrascht sein; setze die beiden ganz kleinen Koeffizientenwerte exakt Null, fixiere die Funktionen der rechts daneben liegenden Kontrollkästchen und passe erneut durch einen Klick auf [Auto fit] die Funktion ein. Die Funktionsgleichung heißt somit: \(f(x) = \) bzw. \(A(U) = \)

Rechne vor, dass beim Kreis \(A(U) = \frac{U^2}{4\pi} \) ist und gib auch den Kehrwert von \(4\pi \) an.

3.1.3 Erforschung von Oberfläche und Volumen einer Kugel

Arbeitsteam:

Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Stelle für eine Kugel die Abhängigkeit der Oberfläche und des Volumens vom Radius dar und untersuche mit diesem Modell speziell die Abhängigkeit der Oberfläche vom Volumen dieses Körpers.

Weitere Tipps und Infos:

a) Zum Modell

Öffne das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Verwende den Radius \(r \) als unabhängige Variable (im Eigenschaftenfenster das Kontrollkästchen bei „Symbol visible in the Model window‘ aktivieren). Die Konstante \(\text{KreisZahl Pi} \) kann auch genauer als mit dem Wert 3.14 mit dem Formeleditor durch
4*\text{ArcTan}(1) \text{ definiert werden. Für die Definition der Variablen Oberfläche } \textbf{Oberfl} \text{ und Volumen } \textbf{V} \text{ sind die bekannten Formeln zu verwenden.}

\textbf{Achtung:} Denkbar ist auch, dass Unterstufenschüler das fertige Modell bekommen, und, ohne die Formeln im Modell anzuschauen, die Formeln mit dieser Aktivität erforschen.

\textbf{b) Zu den Diagrammen}

\textbf{Diagramm „Kugel: O und V als Funktion vom } r^{\text{“}}

erhorizontale Achse: unabhängige Variable \(r \) mit einer Skalierung von 0 bis 5

erste vertikale Achse: Variablen \textbf{Oberfl} und \textbf{V} mit einer Skalierung von 0 bis 300; blau bzw. rot.

\textbf{Diagramm „Kugeloberfläche als Funktion des Volumens“}

horizontale Achse: Variable \textbf{V} mit einer Skalierung von 0 bis 300,
erste vertikale Achse: die Variable \textbf{Oberfl} mit der Skalierung von 0 bis 300; grün;

durch das Aktivieren des Kontrollkästchens bei \textit{Keep the same ratio} wird für beide Achsen auch derselbe Maßstab eingestellt.

Um das Oberflächen-Volumen-Verhältnis der Kugel mitjenem beim Würfel vergleichen zu können, sollen in die Spalte \textbf{C3} der Diagrammtabelle mit der Bezeichnung \textbf{Oberfl}_Würfel jene Zahlenwerte kommen, welche die Abhängigkeit der Oberfläche vom Volumen eines Würfels beschreiben. Dazu muss bei \textit{Connection}, \textit{Formula} eingestellt werden und über den Formeleditor der Term 6*V^(2/3) eingegeben werden.

Für die Würfeloberfläche gilt nämlich: \(O=6*\sqrt[3]{V^2}=6*V^{2/3} \)

\textbf{1) Mein eigenes Modellfenster:}

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

\textbf{2) Mein Diagramm „Kugel: O und V als Funktion vom } r^{\text{“}}

\textbf{Fragen:}

(1) Bei welchem Radius ist der Zahlenwert von Oberfläche und Volumen gleich? Wenn du die Berechnungsformeln kennst, dann bestätige dein Scan-Ergebnis durch eine Rechnung.

Falls du die Koeffizienten der Berechnungsformeln nicht kennst, wird klar, um welchen Faktor der eine Koeffizient größer sein muss als der andere.

(2) Passe mit der Option \textit{Analyse/Function-fit} des Diagramm-Kontextmenüs in den Graphen \textbf{Oberfl} eine mathematische Funktion ein; verwende den dritten angebotenen Funktionstyp; drücke die Schaltfläche \textit{[Auto fit]} und betrachte die Koeffizienten. Setze die Koeffizienten \(b \) und \(c \) exakt Null, fixiere sie mit einem Häckchen rechts daneben und drücke nochmals \textit{[Auto fit]}. Wie groß ist der Koeffizient \(a \) ? Von welcher Zahl ist er ein ganzzahliges Vielfaches? Wie heißt die Oberflächenformel?

3) Mein Diagramm „Kugeloberfläche als Funktion des Volumens“

Vervollständige: Dieses Diagramm zeigt deutlich, dass bei gleichem Volumen die Kugel immer die kleinere Oberfläche hat als der Würfel. Die Kugel ist allgemein jener Körper, der bei vorgegebenem Volumen die kleinste Oberfläche hat.

Passe mit der Option Analyse/Function-fit des Diagramm-Kontextmenüs in den Graphen Oberfläche eine mathematische Funktion ein; wähle dazu als Funktionstypen $f(x)=a*(x+b)^c+d$ aus, setze b und d exakt Null und bestimme a und c. a muss kleiner als 6 (gilt beim Würfel) und c muss – aus Dimensionsgründen – exakt $2/3$ sein. Wie groß ist dein a? Der exakte Wert wäre die Kubikwurzel aus 36π. Gib mit deinen Koeffizienten a die Formel für die Abhängigkeit der Kugeloberfläche vom Volumen an.

$[O(V) = a*V^{(2/3)}]$

3.1.4 Rechtecke bei konstantem Umfang

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Bei einem fix vorgegebenem Umfang (z.B. 20 m Zaun) kann man viele Rechtecke mit unterschiedlichem Flächeninhalt gestalten. Am meisten interessiert jenes Rechteck, welches den größten Flächeninhalt hat.

Mache ein Modell, welches bei Variation der Seitenlänge a unter Berücksichtigung des konstanten Umfanges die Flächeninhalte berechnet und stelle diese als Funktion von a dar. Die Seitenlänge a muss also als unabhängige Variable verwendet werden.

Weitere Tipps und Infos:

a) Zum Modell

Lege ev. ein neues Projekt, auf jeden Fall eine neue Aktivität an. Öffne das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell:

Die Berechnungsformeln werden spätestens in der ersten Klasse des Gymnasiums gelernt.

Unabhängige Größe ist die Seitenlänge a; als Schrittweite ist 0.1 brauchbar. Der Startwert für a darf Null sein (worum?); als höchster Wert für a (als „Stoppwert“) macht nur 10 Sinn, falls der Umfang mit 20m festgelegt ist.

b) Zum Diagramm „Rechteckflächen bei fixem Umfang als Funktion von a“

horizontale Achse: unabhängige Variable a mit Skalierung von 0 bis 10
erste vertikale Achse: **Fläche** mit der Skalierung von 0 bis 50; rot
zweite vertikale Achse: **b** mit der Skalierung von 0 bis 10; grün

c) Zur unabhängigen Tabelle „Table 1“
Diese soll die Variablen **a, b, Umfang** und **Fläche** enthalten. Falls man in die Diagrammtabelle die Spalte Umfang einfügt, hat man das Problem, dass dann auch eine konstante Funktion für den Umfang im Diagramm sichtbar wird; stellt man diese Spalte dann auf „invisible“, so wird diese auch in der Diagrammtabelle nicht mehr angezeigt.

1) Mein eigenes Modellfenster:
Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Rechteckflächen bei fixem Umfang als Funktion von a“

Fragen:

(1) Ermittle im Scan-Modus (Diagramm-Kontextmenü) jene Seitenlängen, bei denen der Flächeninhalt maximal ist; gib die Seitenlängen und die maximale Fläche an.
(2) Passe mit der Option **Analyse/Function-fit** des Diagramm-Kontextmenüs in den Graphen **Fläche** eine mathematische Funktion ein; verwende den dritten angebotenen Funktionstyp (Polynomfunktion 2. Ordnung), drücke die Schaltfläche **[Auto fit]** und betrachte die Koeffizienten. Setze den Koeffizienten c exakt Null, fixiere ihn mit einem Häckchen rechts daneben und drücke nochmals **[Auto fit]**. Die eingepasste Funktionsgleichung heißt somit: \(f(x) = \) d.h.: Fläche = (Bedenke, dass bei uns U = 20 und 10 dann U/2 ist)
(3) Verwende die Umfang- und die Flächenformel des Rechtecks, setze U als Formvariable (Tipp: U wie eine Konstante behandeln) ein und stelle schließlich die Fläche als Funktion von a dar (b muss durch U und a ersetzt werden).

Vervollständige: \(\Psi \Psi \) Das Quadrat \(\Psi \) ist jenes Rechteck, das unter allen Rechtecken mit fixem Umfang die größte Fläche hat.

3.1.5 Rechtecke bei konstantem Flächeninhalt

Arbeitsteam:
Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung
Bei einem fix vorgegebenem Flächeninhalt (z.B. 9 m²) kann man viele Rechtecke mit unterschiedlichen Seitenlängen und unterschiedlichem Umfang gestalten. Am meisten interessiert hier jenes Rechteck, welches den kleinsten Umfang hat.

Mache ein Modell, welches bei Variation der Seitenlänge a unter Berücksichtigung der konstanten Fläche die Größe des Umfanges berechnet und stelle den Umfang als Funktion von a dar. Die Seitenlänge a muss also als unabhängige Variable verwendet werden.
Weitere Tipps und Infos:

a) Zum des Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell:

Die Definitionen für die Variablen \(b \) und \(\text{Umfang} \) sind klar. Als \textit{Schrittweite} für \(a \) ist 0.1 brauchbar. Der \textit{Startwert} für \(a \) darf nicht Null sein (warum? verwende z.B.: 0.2), als \textit{Stoppwert} passt 10.

b) Zum Diagramm „Rechteckumfang bei fixer Fläche als Funktion von \(a \)"

horizontale Achse: unabhängige Variable \(a \) mit Skalierung von 0 bis 10
erste vertikale Achse: Variable \(\text{Umfang} \) mit der Skalierung von 0 bis 50; rot
zweite vertikale Achse: Variable \(b \) mit der Skalierung von 0 bis 10; grün

c) Zur unabhängigen Tabelle „Table 2“

Diese soll die Variablen \(a, b, \text{Umfang} \) und \(\text{Fläche} \) enthalten.

Falls man in die Diagrammtabelle die Spalte \(\text{Fläche} \) einfügt, hat man das Problem, dass dann auch eine konstante Funktion für die Fläche im Diagramm sichtbar wird; stellt man diese zusätzliche Spalte dann auf 'invisible', so wird sie auch in der Diagrammtabelle nicht mehr angezeigt.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Rechteckumfang bei fixer Fläche als Funktion von \(a \)"

Fragen:

(1) Ermittle im Scan-Modus (Diagramm-Kontextmenü) jene Seitenlängen, bei denen der Umfang minimal ist; gib die Seitenlängen und den minimalen Umfang an.

(2) Da die Anzahl der angebotenen Funktionstypen auch in Coach6 begrenzt ist, können wir in den Graphen des Umfangs nicht automatisch eine mathematische Funktion einpassen.

Stelle \textit{rechnerisch} für das Rechteck bei fixem Flächeninhalt den Umfang als Funktion der Seitenlänge \(a \) dar.

Behandle den Flächeninhalt \(A \) dabei als Formvariable wie eine Konstante. Das Ergebnis der Umformung lautet:

\[
U(a) = 2*a + 2*A/a \quad \text{Für } A = 9\text{m}^2 \text{ heißt das: } U(a) = 2*a + 18/a. U(a) \text{ ist also eine Kombination einer homogenen linearen Funktion } [y=k*x; \text{ erster Teil von } U(a)] \text{ und der „reziproken“ Funktion } [y=c / x; \text{ zweiter Teil von } U(a)].
\]

Vervollständige: Das Quadrat ist jenes Rechteck, das unter allen Rechtecken mit fixer Fläche \(\Psi \) den kleinsten Umfang \(\Phi' \) hat.

3) Mein Diagramm „Rechteckumfang bei fixer Fläche als Funktion von a“ inklusive der beiden Teil-Funktionen:

Stelle zuerst noch die beiden oben berechneten Teil-Funktionen im Diagramm auf der ersten vertikalen Achse (Skalierung von 0 bis 50) dar. Dazu musst du in der Diagrammtabelle in den Spalten C4 bzw. C5 die Funktionsterme \(2*a \) bzw. \(2*\text{Fläche}/a \) eingeben. Wenn wir aber in der Diagrammtabelle mit der Variablen Fläche rechnen wollen, muss diese Variable vorher auch einer Spalte, z.B. der Spalte C6, zugeordnet worden sein. Damit dann im Diagramm kein Flächen-Graph gezeichnet wird, stellen wir die Spalte C6 auf „invisible“. Die Graphen der beiden Teil-Funktionen sollen in dünnen blauen Linien ins Diagramm gezeichnet werden.

Frage: Welcher Zusammenhang kann aus dem Diagramm zwischen den Graphen der Umfangsfunktion und der beiden Teil-Funktionen herausgelesen werden?

3.1.6 Minimale Oberfläche eines quadratischen Quaders bei fixem Volumen

Arbeitsteam:

Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Einen quadratischen Quader mit fix vorgegebenem Volumen (z.B. 500 m³; Volumen eines Hauses) kann man mit unterschiedlichen Grundkanten und Höhen gestalten, wobei sich die Oberfläche dadurch verändert. Am meisten interessiert hier jener Quader, welcher die kleinste Oberfläche hat. Diese zunächst theoretische Fragestellung ist auch etwa im Wohnungsbau interessant, da die Energieverluste durch Transmission bei Gebäuden über ihre Gebäudehüllfläche = Oberfläche erfolgen.

Mache ein Modell, welches unter Berücksichtigung des konstanten Volumens bei Variation des Verhältnisfaktors \(f_{h \, zu \, a} \) zwischen Höhe und Grundkante die Größen der Oberfläche berechnet und stelle schließlich die Oberfläche als Funktion dieses Verhältnisfaktors \(f_{h \, zu \, a} \) dar. Dieser Verhältnisfaktor muss also als unabhängige Variable verwendet werden.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabh. Variable \(f_{h \, zu \, a} \) soll die Werte von 0.1 bis 2 durchlaufen, eine brauchbare Schrittweite ist 0.01. Null darf dieser Faktor aber wegen der Berechnung von \(a \) (siehe un-
ten) nie sein.

Zu den Berechnungsformeln: \(V = a^2h, \quad f = h/a, \quad h = a^*f, \quad d.h.: \quad V = a^2f^*a = f^3a; \quad a = \left(\frac{V}{f}\right)^{1/3} \). Die Quaderoberfläche ist gleich der doppelten Grundfläche \(G \) vermehrt um die Mantelfläche \(M \) (=4*a*h).

b) Zum Diagramm „Quadrat. Quader mit minimaler Oberfläche“

horizontale Achse: unabhängige Variable \(f_h_zu_a \) mit Skalierung von 0 bis 2
erste vertikale Achse: Variable \(\text{Oberfl} \) mit der Skalierung von 200 bis 800; rot

c) Zur unabhängigen Tabelle „Table 1“

Diese soll den \textbf{Zeilenindex} (Kontrollkästchen „show row index‘ aktivieren) anzeigen und die Variablen \(f_h_zu_a, \text{Oberfl}, a \) und \(h \) enthalten. Bei der Variablen \(\text{Oberfl} \) soll die Zahl der Dezimalstellen auf 3 oder 4 erhöht werden, damit man das Minimum besser feststellen kann.

Falls man in die Diagrammtabelle zusätzliche Spalten einfügen wollte, hat man das Problem, dass dann deren Werte auch als Graphen im Diagramm sichtbar werden; stellt man diese zusätzlichen Spalten auf „invisible‘, so werden diese auch in der Diagrammtabelle nicht mehr angezeigt.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked‘ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Quadrat. Quader mit minimaler Oberfläche“

Frage:

Ermittle im „Scan‘-Modus (Diagramm-Kontextmenü) jenen Faktor zwischen Höhe und Grundkante, bei dem die Oberfläche minimal ist, und interpretiere die Zahlenwerte. Gib die Kantenlängen und die Formel zur Berechnung der minimalen Oberfläche an.

Vervollständige: Unter allen quadratischen Quadern mit vorgegebenem Volumen ist \(W \) der Würfel \(W \) jener mit minimaler Oberfläche.

3.1.7 Stammfunktion der konstanten und linearen Funktion

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

\(F(x) \) ist eine Stammfunktion einer Funktion \(f(x) \), wenn die Ableitung von \(F(x) \) gleich \(f(x) \) ist, kurz wenn gilt: \(F'(x) = f(x) \). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man \(F(x_o) \), den Funktionswert einer Stammfunktion an der Stelle \(x_o \), als Summe aller Flächenstücke, die zwischen dem Graphen von \(f(x) \) und der x-Achse bis zu dieser Stelle \(x_o \) liegen.
Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die Stammfunktion gefunden und untersucht werden.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die **unabhängige Variable** \(x\) soll die Werte von **-5 bis 5** durchlaufen, eine brauchbare **Schrittweite** ist **0.01**. Damit das Variablensymbol für \(x\) auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible in the Model window“ aktiviert sein.

Für eine Gerade gilt: \(y = k \times x + d\)

Obwohl wir für \(k\) und \(d\) Konstantensymbole verwenden, kann man deren Werte variieren.

In der „normalen“ Variablen (auxiliary variable) \(f_x \) sollen die Funktionswerte der linearen Funktion berechnet werden.

In der Bestandsvariablen (state variable) \(\text{Sum} \) werden die senkrechten Flächenstreifen zwischen der Geraden und der \(x\)-Achse aufsummiert. Der Anfangswert von \(\text{Sum} \) soll dabei Null sein. Die Fläche eines Streifens ist jeweils der Funktionswert der Geraden an der aktuellen Stelle multipliziert mit der Breite des Streifens, die gleich der Schrittweite \(dx\) ist. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Funktionswert der Geraden dort negativ ist. Der **Flow**, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von Sum dazu gezählt werden. Obwohl hier zwischen dem aktuellen Wert von Sum und der Variablen StammF_\(x\) kein Unterschied besteht, wollen wir hier schon eine eigene Variable **StammF_\(x\)** einsetzen.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von \(f_x \) zum **Inflow** von Sum gezeichnet ist, ist dort schon alles erledigt. Der Flow ist eine Änderungsrate, die angibt, um wie viel sich die Bestandsgröße bezüglich der Einheit der unabhängigen Variablen verändert. Die wirkliche Änderung pro Durchrechnungsschritt ist dann das Produkt aus Flow und Schrittweite der unabhängigen Variablen \(f_x \times dx \); das ist die Fläche eines Streifens.

Das Aufsummieren dieser Größe im Textmodus eines Modells würde man mit folgender Befehlszeile machen:

\[\text{Sum} := \text{Sum} + dA, \text{ wobei davor } dA = f_x \times dx \text{ stehen müsste; } \]

oder in einer einzigen Zeile: \[\text{Sum} := \text{Sum} + f_x \times dx. \]
b) Zum Diagramm „Gerade und ihre Stammfunktion“

horizontale Achse: unabhängige Variable \(x \) mit Skalierung von -5 bis 5
erste vertikale Achse: Variable \(f_x \) mit der Skalierung von -50 bis +50; grün
zweite vertikale Achse: Variable \(\text{StammF}_x \), Skalierung von -50 bis +50; rot

c) Zur unabhängigen Tabelle „Table 1“

Zur Analyse ist immer auch eine unabhängige Tabelle praktisch. Diese soll den Zeilenindex (Kontrollkästchen ‘show row index’ aktivieren) anzeigen und die Variablen \(x \), \(f_x \) und \(\text{StammF}_x \) enthalten. Bei den Spalten mit den Funktionswerten erhöhen wir die Anzahl der Dezimalstellen auf 4.

Ev. könnte man auch die Größe der Flächenstreifen \(dA \) anzeigen lassen, welche gleich \(f_x \cdot 0.01 \) ist. Auf das ‘Step interval’ \(dx \) hat man als Variable im Grafikmodus offensichtlich innerhalb der Tabellen keinen Zugriff.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster ‘undocked’ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Gerade und ihre Stammfunktion“ für die konstante Funktion \(f(x) = 5 \):

Frage:

Die Stammfunktion \(F(x) \) ist eine Gerade. Mit „Freihandauge“ erkennt man ihre Steigungszahl und ihren Ordinatenabschnitt. Formuliere die Gleichung der Stammfunktion.

Vervollständige:

(1) Die Stammfunktion einer konstanten Funktion ist eine lineare Funktion mit \(\Psi \) dieser Konstanten \(\Psi \) als Steigungszahl.

3) Mein Diagramm „Gerade und ihre Stammfunktion“ für die homogene lineare Funktion \(f(x) = 3 \cdot x \):

Frage:

Schreibe die Gleichung der Stammfunktion an und verzichte dabei auf den Zahlenwert von c: \(F(x) = a \cdot x^2 + c = \)

Rechne das Modell auch für andere ganzzahlige Steigungszahlen mit unterschiedlichen Vorzeichen durch.

Vervollständige:

(1) Die Stammfunktion einer homogenen linearen Funktion ist eine Quadratfunktion, deren Koeffizient gleich der Hälfte der \(\Psi \) Steigungszahl \(\Psi \).
(2) Der Graph der Stammfunktion einer homogenen Funktion ist eine zur \(y \)-Achse symmetrische Parabel. Sie ist nach oben offen, wenn die Steigungszahl der linearen Funktion positiv ist, sie ist nach unten offen, wenn diese Steigungszahl negativ ist.

4) Mein Diagramm „Gerade und ihre Stammfunktion“ für die inhomogene lineare Funktion \(f(x) = -3/2 \times x + 4 \):

Frage:

Der Graph der Stammfunktion \(F(x) \) ist offensichtlich immer noch eine Parabel zweiter Ordnung, die aber auch horizontal verschoben ist. Bestimme mit der Option „Analyse/Function-fit“ die Parameter dieser Stammfunktion. Der Parameter \(c \) ist irrelevant wegen der sog. Integrationskonstanten, und \(a \) ist von größtem Interesse: Was beim Integrieren mit der Steigungszahl passiert, haben wir bei der homogenen linearen Funktion gelernt; sie wird halbiert und bildet den Parameter \(a \) der Stammfunktion. Was mit der Konstanten der linearen Funktion passiert, wurde beim Integrieren der konstanten Funktion deutlich; die Konstante wird zum Koeffizient des linearen Gliedes der Stammfunktion. Die Stammfunktion hat also die Gleichung:

\[
F(x) = \frac{-3/2}{2}x^2 + 4x + c \Rightarrow -3/4x^2+4x+c
\]

Wie heißt die Gleichung deiner in den Graphen von StammF_x eingepassten Funktion?

Vervollständige:

(1) Die Stammfunktion einer inhomogenen linearen Funktion ist eine Polynomfunktion zweiter Ordnung, deren Koeffizient \(a \) gleich der Hälfte der Steigungszahl \(\Psi \) und deren Koeffizient \(b \) gleich der additiven Konstanten der linearen Funktion sind.

(2) Der Graph der Stammfunktion einer inhomogenen Funktion ist symmetrisch gegenüber jener senkrechten Achse, die durch die Nullstelle der linearen Funktion gegeben ist. Die Nullstelle der linearen Funktion und die Scheitelstelle des Graphen ihrer Stammfunktion sind \(\Psi \) ident.

(3) Allgemein gilt: \(f(x) = a^*x + b \)

\[
F(x) = a/2x^2 + bx + c \Psi
\]

3.1.8 Stammfunktion der Cosinusfunktion

Kurzbeschreibung der Aufgabenstellung:

\(F(x) \) ist eine Stammfunktion einer Funktion \(f(x) \), wenn die Ableitung von \(F(x) \) wieder gleich \(f(x) \) ist, kurz wenn gilt: \(F'(x) = f(x) \). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man \(F(x_0) \), den Funktionswert einer Stammfunktion an der Stelle \(x_0 \), als Summe aller Flächenstücke, die zwischen dem Graphen von \(f(x) \) und der \(x \)-Achse bis zu dieser Stelle \(x_0 \) liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant.

Mache ein Modell, mit dem man den Graphen der Cosinusfunktion im Intervall \([0;10] \) zeichnen kann. Zusätzlich sollen die Flächenstreifen beginnend bei \(x=0 \) schrittweise aufsummiert werden. Die aktuelle Zwischensumme dieser Flächenstreifen ist der
Funktionswert der Stammfunktion, welche ebenfalls im Diagramm dargestellt werden soll.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die Stammfunktion gefunden und untersucht werden.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die **unabhängige Variable** \(x\) soll die Werte von 0 bis 10 durchlaufen, eine brauchbare **Schrittweite** ist 0.01. Damit das Variablensymbol für \(x\) auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible..“ aktiviert sein.

Die Modellvariable **Cosinus_f_x** wird mit Hilfe der Mathematischen Funktion des Formeleditors definiert. Wir lassen die Standardeinstellung Radiant für das Argument der Winkelfunktion.

In der Bestandsvariablen (state variable) **Sum** werden den senkrechten Flächenstreifen zwischen dem Graphen der Cosinusfunktion und der x-Achse aufsummiert. Der Anfangswert von Sum soll dabei Null gesetzt sein. Die Fläche eines Streifens ist jeweils der Funktionswert von Cos(x) an der aktuellen Stelle multipliziert mit der Breite des Streifens, die gleich der Schrittweite dx ist. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Wert der Funktion f(x) dort negativ ist. Der **Flow**, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von Sum dazugezählt werden. Obwohl hier zwischen dem aktuellen Wert von Sum und der Variablen StammF_x kein Unterschied besteht, wollen wir eine eigene Variable **StammF_x** einsetzen.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von **Cosinus_f_x** zum **Inflow** von Sum gezeichnet ist, ist dort schon alles erledigt. Es handelt sich bei einem **Flow** um eine Änderungsrate, die immer auf die Einheit der unabhängigen Variablen bezogen ist. Die eigentliche Änderung pro Durchrechnungsschritt ist das Produkt aus Flow und ‚Step interval‘: Änderungsrate = Inflow = **Cosinus_f_x**; Änderung ist dann Cosinus_f_x*dx pro Durchrechnungslauf.

Hier ist das **Modell** zu dieser Aufgabe im **Textmodus** abgebildet. Rechts der einfachen Hochkommas stehen jeweils Kommentare.

Das Aufsummieren der Flächenlemente erfolgt in der dritten Programmzeile mit
\textit{Sum:=Sum+dA im linken Teil des Modellfensters.}

b) Zum Diagramm „Cos(x) und Stammfunktion“

horizontale Achse: unabhängige Variable \(x \) mit Skalierung von 0 bis 10
auf der ersten vertikalen Achse werden mit derselben Skalierung (von -2 bis +2) folgende drei Variablen angezeigt: Variable \textit{Cosinus_f_x} grün, die Variable \textit{Sum} blau und die Variable \textit{StammF_x} rot.

c) Zur unabhängigen Tabelle „Table 1“

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Cos(x) und Stammfunktion“:

Fragen:

(1) Was ist die Stammfunktion der Cosinusfunktion für eine Funktion?

(2) Vervollständige die formale Schreibweise:
\[
f(x) = \cos(x) \Rightarrow F(x) = \ldots + c
\]

(3) Auch mit Coach6 kann der Graph von \textit{StammF_x} identifiziert werden. Wenn man mit \textit{Analyse/Function fit} eine mathematische Funktion in diesen Datengraphen von \textit{StammF_x} einpasst und dabei als Funktionsform \(f(x) = a\sin(bx+c)+d \) auswählt, der als letzter in der Liste von Coach6 angeboten wird, sieht man sofort nach dem Klick auf \textit{[Auto fit]}, dass der Graph von \textit{StammF_x} eine \textit{Sinusfunktion} darstellt (die beiden ersten Koeffizienten sind exakt 1, die restlichen haben (fast) die Werte Null). Setze die Werte von \(c \) und \(d \) exakt Null und die Einpassung ist perfekt.

(4) Auch in die gegebene Funktion \textit{Cos(x)} des Diagramms kann mit Coach6 eine Funktion eingepasst werden; wähle in Ermangelung eines anderen Funktionstyps wieder \(f(x) = a\sin(bx+c)+d \) aus. Gib den Wert für den Parameter \(c \) an.

(5) Ermittle durch Scannen, um wie viel die Graphen der Sinus- und Cosinusfunktion horizontal verschoben sind.

\textit{Vervollständige:}

(1) Die \textit{Sinusfunktion} ist die Stammfunktion der \textit{Cosinusfunktion}. Deshalb ist auch die \(\psi^\prime \) \textit{Ableitungsfunktion} \(\psi \) der Sinusfunktion die Cosinusfunktion.
Die Cosinusfunktion kann auch als Sinusfunktion mit einer Phasendifferenz von \(c = \Delta x = \Delta \varphi = +1.57 = \frac{\pi}{2} \) aufgefasst werden.

3.1.9 Stammfunktion der Sinusfunktion

Kurzbeschreibung der Aufgabenstellung:

F(x) ist eine Stammfunktion einer Funktion f(x), wenn die Ableitung von F(x) wieder gleich f(x) ist, kurz wenn gilt: F'(x) = f(x). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man F(x₀), den Funktionswert einer Stammfunktion an der Stelle x₀, als Summe aller Flächenstücke, die zwischen dem Graphen von f(x) und der x-Achse bis zu dieser Stelle x₀ liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant. Man könnte auch sagen, dass der Anfangswert beim Aufsummieren nicht zwingend Null sein muss.

Mache ein Modell, mit dem man den Graphen der Sinusfunktion im Intervall \([0;10]\) zeichnen kann. Zusätzlich sollen die Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse beginnend bei x=0 schrittweise aufsummiert werden. Die aktuelle Zwischensumme dieser Flächenstreifen ist der Funktionswert der Stammfunktion, welche ebenfalls im Diagramm dargestellt werden soll.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die gefundene Stammfunktion ermittelt werden.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable \(x \) soll die Werte von \(0 \) bis \(10 \) durchlaufen, eine brauchbare Schrittweite ist 0.01. Damit das Variablensymbol für \(x \) auch angezeigt wird, muss in seinem Eigenschaftsfenster unten „Symbol visible..“ aktiviert sein. Die Modellvariable Sinus_f_x wird mit Hilfe der Mathematischen Funktion \(\sin(x) \) im Formeleditor definiert. Wir verändern die Standardeinstellung Radiant für das Argument der Winkelfunktion nicht.

In der Bestandsvariablen (state variable) Sum werden die senkrechten Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse aufsummiert. Der Anfangswert von Sum setzen wir dabei Null, was aber nicht zwangsläufig so sein muss. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Funktionswert von Sin(x) dort negativ ist. Der Flow, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von Sum dazugezählt werden. Der aktuelle Wert von Sum wird hier nicht...
der Funktionswert der Stammfunktion sein; deshalb müssen wir eigene Variable StammF_x einsetzen. **Auf die Definition dieser Variablen verzichten wir aber vorerst.** Deshalb wird im Innern des Variablensymbols ein *Fragezeichen* angezeigt.

Zeichne zuerst alle Symbole und Verbindungspfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von Sinus_f_x zum **Inflow** von Sum gezeichnet ist, ist dort schon alles erledigt. Es handelt sich bei einem **Flow** um eine Änderungsrate, die immer auf die Einheit der unabhängigen Variablen bezogen ist; die Änderungsrate ist **Sinus_f_x**, die Änderung pro Durchrechnungsschritt ist **Sinus_f_x*dx**, das die Fläche des Streifens zwischen Sinus_f_x und x-Achse ist.

b) Zum Diagramm „Sin(x) und Stammfunktion“

horizontale Achse: unabhängige Variable x mit Skalierung von 0 bis 10
Auch der ersten vertikalen Achse werden mit derselben Skalierung (von -2 bis +2) in der Endversion folgende drei Variablen angezeigt: Variable **Sinus_f_x** grün und die Variable **Sum** blau. Auf die Anzeige der Variablen StammF_x – sie wird in Anlehnung an die Farbe des Variablensymbols im Modellfenster auch rot sein – wollen wir vorläufig verzichten.

c) Zur unabhängigen Tabelle „Table 1“

Zur Analyse ist immer auch eine unabhängige Tabelle praktisch. Diese soll den Zeilenindex (Kontrollkästchen „show row index“ aktivieren) anzeigen und die Variablen Sinus_f_x, Flow_1, Streifenfl und Sum enthalten.

Auf die Anzeige von StammF_x müssen wir vorläufig auch hier verzichten.

Die Spalte C3 mit der Bezeichnung (Quantity) Streifenfl wird über eine Formel definiert (bei ’Connection’ ,’Formula’ auswählen); die im Formeleditor einzugebende Formel heißt Flow_1*0.01, wenn die Breite der Flächenstreifen wie oben empfohlen wirklich 0.01 ist. Bei den ersten zwei Spalten erhöhen wir die Anzahl der Dezimalstellen auf 4, bei allen weiteren auf 6.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

Im Innern des Symbols der Variablen StammF_x wird vorerst ein Fragezeichen angezeigt.

2) Mein Diagramm „Sin(x) und Stammfunktion“: **ohne** den Graphen von StammF_x:

Das Diagramm zeigt einen Graphen der Variablen **Sum**, dessen Funktionswerte zwar schwanken wie eine Sinus- oder Cosinusfunktion, dessen Wertebereich [0;2] aber noch nicht passt.

Frage:

Wir erinnern uns daran, dass eine Stammfunktion immer nur bis auf eine additive Konstante definiert ist. Welchen Konstantenwert müssen wir zu den Funktionswerten von Sum addieren, damit der Graph um 1 Einheit in der y-Richtung nach unten ver-
schoben wird und der Wertebereich gleich [-1;+1] wird?
Beachte die Schieberegeln bei Funktionsgraphen!

3) Mein Diagramm „Sin(x) und Stammfunktion“: mit dem Graphen von StammF_x: Definiere dazu zuerst im Modell die Variable StammF_x, indem du dort die Formel \text{Sum} + (-1) oder kürzer \text{Sum} – 1 eingibst. Vervollständige danach die Anzeige von StammF_x im Diagramm und in der Tabelle. Dann rechne das Modell neu durch und übertrage das Diagramm hier her.

Frage:
(1) Funktionen-Experten/innen wissen, dass man einen Graphen an der x-Achse spiegelt, wenn man ein Minus vor den ganzen Funktionsterm setzt. Was sieht man für einen Funktionsgraphen, wenn man die rot gezeichnete Stammfunktion an der x-Achse spiegelt?

(2) Die Stammfunktion ist also eine an der x-Achse gespiegelte Cosinusfunktion. Wie heißt deshalb die Funktionsgleichung von StammF_x?

(3) Coach6 kann als Winkelfunktionen nur Sinusfunktionen „identifizieren“. Im „Function-fit“-Fenster wird die Stammfunktion mit einem einzigen Klick auf [Auto fit] wie folgt eingepasst: StammF_x = 1*Sin(1*x-1.57)+8.3E-008 = Sin(x-\pi/2).
Wenn man berücksichtigt, dass die Sinusfunktion eine ungerade Funktion ist, und wenn man sich bei den Winkelfunktionen am Einheitskreis auskennt, kann man leicht zeigen, dass gilt: StammF_x = Sin(x-\pi/2) = - Cos(x). Zeige, dass das richtig ist.

Vervollständige:
\[f(x) = \cos(x) \Rightarrow F(x) = \sin(x) + c; \quad f(x) = \sin(x) \Rightarrow F(x) = - \cos(x) + c \]
3.2 Arbeitsblätter / Protokollvorlagen der Physik-Projekte

3.2.1 Der freie Fall

Arbeitsteam:

Datum und Ort der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Aus einer Höhe Abwurf_h fällt ein Gegenstand frei nach unten und prallt auf den Boden. Mache ein Modell und zwei Diagramme, ein erstes, in dem \(y(t) \) und \(v(t) \) dargestellt ist, und ein zweites, welches die Geschwindigkeit \(v \) als Funktion des Fallweges zeigt. Zusätzlich wäre auch ein Diagramm interessant, das die Fallzeit als Funktion des Fallweges zeigt.

In diesem einfachen Beispiel soll bei der Modellerstellung im Speziellen der Umgang mit den In- und Outflows geübt werden, bei den Diagramm das Rechnen in der Diagrammtabelle.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die unabh. Variable ist die Zeit \(t \). Sie soll vorläufig mit einer Schrittweite von 0.01 von 0 bis 10 laufen.

Die Geschwindigkeit \(v \) nimmt zu, deshalb setzen wir einen Inflow ein. Die \(y \)-Koordinate nimmt ab, deshalb arbeiten wir mit einem Outflow. Der Anfangswert von \(v \) ist Null, jener von \(y \) ist \textbf{Abwurf_h}. Zahlenwert und Dimension der Konstanten \(g \) holen wir uns aus der von Coach6 angebotenen Konstantenliste.

Manchmal ist es vorteilhaft, wenn man bei den Richtungen und Vorzeichen physikalischer Größen konsequenter ist. Dabei könnte man das Prinzip verfolgen, dass nach unten gerichtete Größen negative und nach oben gerichtete positive Werte haben sollen. Dieses Prinzip könnte bei unserem Beispiel zu folgendem Modell führen:

Die Anfangsgeschwindigkeit ist Null; während des Falls werden die Geschwindigkeiten immer „negativer“ d.h. mathematisch kleiner, deshalb ist hier bei \(v \) ein Outflow installiert. Die Zahl bei \(v \) zeigt, dass die Geschwindigkeit wirklich negativ wird; es ist jener Wert, den das Modell bei der letzten Durchrechnung für \(t = 10s \) ermittelt hat. Da beim Fallen auch die \(y \)-Koordinate des Gegenstandes kleiner wird, ist der Outflow bei der Bestandsgröße \(y \) ebenfalls „logisch“.
Die dort angezeigte Zahl 540,45 m verrät aber, dass da etwas nicht stimmt, denn der Gegenstand steigt offensichtlich in die Höhe auf.

Dieses Problem kann dadurch behoben werden, dass der Outflow von y ein negatives Vorzeichen bekommt und somit gleich \(-v\) wird. Da nach dieser Änderung dann die Werte der Variablen y auch kontinuierlich kleiner werden, passt jetzt alles. Wir brechen noch im Dialog der Modelleinstellungen die Exekution des Modells durch die Bedingung \(y<0\) ab.

In einer weiteren Version – es geht hier um das Verstehen der Wirkung verschiedener Flows – könnte man die Konstante \(g\) negativ definieren. Dann bekommt die Geschwindigkeit \(v\) wieder einen Inflow und der Outflow von y muss wie in Version 2 gestaltet werden.

b) Zu den Diagrammen

Die folgenden Diagramme gelten für die Version 1 dieses Modells.

Diagramm: \(y(t)\) und \(v(t)\)

horizontale Achse: unabhängige Variable \(t\) mit der Skalierung von 0 bis 5
erste vertikale Achse: Variable \(y\) mit der Skalierung von 0 bis 100; blau
zweite vertikale Achse: Variable \(v\) mit der Skalierung von 0 bis 50; grün

Diagramm: \(v\) (Fallweg)

Der Fallweg muss zuerst noch aus der Variablen \(y\) und der Konstanten \(Abwurf_h\) in der Diagrammtabelle berechnet werden. Alle Daten, mit denen man in der Tabelle rechnen will, müssen zunächst einmal in der Tabelle präsent sein. Deshalb ordnen wir der Spalte C1 die Konstante \(Abwurf_h\) und der Spalte C2 die Variable \(y\) zu und stellen ihre Anzeige bei „Axis“ jeweils auf „invisible“. In der Spalte C3 berechnen wir dann den Fallweg (mit der Formel C1-C2 oder \(Abwurf_h-y\)) und ordnen diese Werte der horizontalen Achse zu. Also:

horizontale Achse: der berechnete Wert \(Fallweg\) mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable \(v\) mit einer Skalierung von 0 bis 50; rot

Diagramm Fallzeit (Fallweg)

Die unabhängige Diagrammvariable auf der horizontalen Achse ist hier der Fallweg. Da dieser schon in einer anderen Diagrammtabelle dieser Aktivität berechnet wurde, steht er in dieser Diagrammtabelle ebenfalls zur Auswahl zur Verfügung.

horizontale Achse: Größe \(Fallweg\) mit Skalierung 0 bis 100
erste vertikale Achse: Variable \(t\) mit einer Skalierung von 0 bis 5; violett

1) Mein eigenes Modelfenster:

2) Mein Simulations-Diagramm „y(t) und v(t)“ für Abwurfhöhen von 20, 40 und 80m:

Vervollständige:
Zeitlich nimmt die Geschwindigkeit beim freien Fall \(\Psi\) linear \(\Psi\) zu. Pro Sekunde nimmt die Geschwindigkeit um \(\Psi\) 9,81 m/s \(\Psi\) zu.

Die Fallzeit kann in diesem Diagramm auf der \(\Psi\) horizontalen \(\Psi\) Achse abgelesen werden.

Wenn man die Wurfhöhe vervierfacht, \(\Psi\) verdoppelt \(\Psi\) sich die Fallzeit

3) Mein Diagramm „v (Fallweg)“

Frage: Wie nimmt die Geschwindigkeit in Abhängigkeit vom Fallweg zu?

Antwort: Auf den ersten Metern…

Frage: Wie groß ist die Geschwindigkeitsänderung auf der 5.Dekade des Fallweges (von 40 bis 50m)? **Antwort:**

4) Mein Diagramm „Fallzeit (Fallweg)“

Passe eine allgemeine Quadratwurzelfunktion \(f(x)=a*Sqrt(b*x+c)+d\) mit der Option „Analyse/Function fit..“ des Grafik-Kontextmenüs in den Graphen ein und setze dabei die Koeffizienten c und d exakt Null; das Ergebnis \(a=0.45\) und \(b=1\) bedeutet dann: \(f(x) = 0.45*Sqrt(x)\) bzw. Fallzeit = \(f(\text{Fallweg}) = 0.45*Sqrt(\text{Fallweg})\) bzw.

Fallzeit in Sekunden = 0.45 mal Quadratwurzel des Fallweges in m

Zeige, dass das Umformen von \(s = \frac{1}{2}gt^2\) für t das gleiche Ergebnis liefert.

3.2.2 Der horizontale Wurf

Arbeitsteam:

Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Aus einer Höhe \(h\) wird ein Gegenstand mit der Geschwindigkeit \(v_{ox}\) abgeworfen. Machen ein Modell und die nötigen Diagramme, damit diese Bewegung bis ins Detail untersucht werden kann. Insbesondere sollen die Geschwindigkeiten \(vx, vy\) und \(v\) gegenüber der Zeit und die Wurfbahn dargestellt werden. Das räumliche Koordinatensystem habe seinen Ursprung auf dem Niveau des Aufprallortes.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die unabh. Variable \(t\) soll zunächst die Werte von 0 bis 10 durchlaufen, eine brauchbare Schrittweite ist 0.01.

Die Geschwindigkeit \(vx\) (wähle z.B. einen Wert 10) ändert sich nicht; der Weg in x-Richtung nimmt zu, deshalb setzen wir bei der Variablen x einen Inflow ein. Die y-Koordinate nimmt ab, deshalb arbeiten wir dort mit einem Outflow. Der Anfangswert der Bestandsgröße \(vy\) ist Null, jener von \(y\) ist gleich der Konstanten \(h_Abwurf\) (wäh-
le z.B. einen Wert 50). Der Inflow bei vy zeigt an, dass diese Geschwindigkeitskomponente beim Wurf größer wird. Zahlenwert und Dimension der Konstanten g holen wir uns aus der von Coach angebotenen Konstantenliste.

b) Zu den beiden Diagrammen

Diagramm: „vx(t) vy(t) und v(t)“
horizontale Achse: unabhängige Variable t mit Skalierung von 0 bis 5
erste vertikale Achse: dieser sollen drei Größen mit derselben Skalierung von 0 bis 50 zugeordnet werden: die Variable vx violett, die Variable vy rot und grün der Betrag der Gesamtgeschwindigkeit v, welche zuerst aber mit der Formel Sqrt(vx²+vy²) in der Spalte C4 der Diagrammtabelle berechnet werden muss.

Diagramm: „y(x) Wurfbahn“
horizontale Achse: Variable x mit Skalierung von 0 bis 100
erste vertikale Achse: Variable y mit einer Skalierung 0 bis 80; blau

Damit die Wurfbahn unverzerrt dargestellt wird, muss im Dialog „Create/Edit diagram…” das Kontrollkästchen „Keep the same ratio” aktiviert werden.

1) Mein eigenes Modellfenster:
Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseite. Wenn das Modellfenster ’undocked’ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „vx(t) vy(t) und v(t)“; Startwerte: vx = 20 m/s, h_Abwurf = 60 m:

Vervollständige:
Je länger der Wurf dauert, umso mehr wird die Gesamtgeschwindigkeit von der Teilbewegung ψΨ des freien Falles ψ bestimmt.

Frage: Wie verändern sich die Bahn-Beschleunigung (die Steigung des v-Graphen) im Laufe der Zeit? Warum ist diese anfänglich gleich Null? Warum nähert sie sich dem Wert 9,81 m/s² an?

3) Meine Simulation im Diagramm „Wurfbahn“ für die Abwurfgeschwindigkeiten vx = 10, 15 und 20 m/s bei einer Abwurfhöhe von 60 m:

3.2.3 Der senkrechte Wurf

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:
Mache ein Modell und die nötigen Diagramme zur Untersuchung und Veranschaulichung dieser Bewegung. Insbesondere soll der Einfluss der Luftreibung auf die Be-
wegung studiert werden, wie dies etwa bei einem Volleyball beobachtet werden kann. Der Ursprung des Koodinatensystems ist das Niveau des Aufprallortes.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster und erstelle das abgebildete Modell:

Die Schwerebeschleunigung \(g \) verringert nach dem Abwurf die Geschwindigkeit \(v \); deshalb hat \(v \) einen Outflow = \(g \). Bei der \(y \)-Koordinate des geworfenen Gegenstandes verwenden wir einen Inflow = \(v \), da \(y \) zuerst einmal größer werden soll.

Dass dieses Modell auch das Fallen im zweiten Teil der Wurfbewegung beschreibt, ist schon toll. Ab dem höchsten Punkt der Wurfbewegung wird die Geschwindigkeit \(v \) durch ihren Outflow negativ und als Folge davon wird auch die \(y \)-Koordinate durch den negativen Inflow wieder verkleinert. Durch das Addieren negativer Werte in der Bestandsgröße \(y \) wird das Ergebnis ja auch immer kleiner.

Auch im Textmodus kann diese Aufgabe gelöst werden. Man sieht dort im Modellfenster jeweils alles außer der Anzahl der eingestellten Berechnungszyklen.

Coach6 übersetzt das Modell vom Grafikmodus in den Textmodus, wenn man auf das Symbol \(\text{ } \) klickt. Diese automatische Übersetzung ist aber etwas umständlicher formuliert und enthält zahlreiche Redundanzen.

b) Zu den Diagrammen

Da der Senkrechte Wurf eine geradlinige Bewegung ist, erstellen wir nur ein \(y(t) \)- und ein \(v(t) \)-Diagramm. Das \(y(t) \)-Diagramm ist dabei aber nicht die Wurfbahn!

Diagramm: \(y(t) \)

horizontale Achse: unabhängige Variable \(t \) mit einer Skalierung von 0 bis 10
erste vertikale Achse: Variable \(y \) mit einer Skalierung von 0 bis 50; blau

Diagramm: \(v(t) \)

horizontale Achse: unabhängige Variable \(t \) mit einer Skalierung von 0 bis 10
erste vertikale Achse: Variable \(v \) mit einer Skalierung von -40 bis +40; rot

c) Zur Lösung mit Luftreibung

Zweckmäßig ist es, die so weit bearbeitete Aktivität mit der [F2]-Taste zu speichern und über 'File/Activity/Save as …' mit dem Namenszusatz 'mit Luftreibung' eine Ko-
Pie dieser Aktivität zu erstellen. Während an den Diagrammen keine Veränderungen nötig sind, wollen wir im Modell jetzt zusätzlich die Luftreibung berücksichtigen.

Für die Luftreibung gilt: \(F_{\text{reib}} = c_w \cdot A \cdot \rho \cdot v^2 \); Der \(c_w \)-Wert einer Kugel ist 0,5, die angestromte Fläche einer Kugel ist ihre Querschnittsfläche (nicht ihre Oberfläche), die Dichte \(\rho \) ist jene der Luft (\(\rho = 1.29 \text{ kg/m}^3 \)) und die Geschwindigkeit \(v \) ist die aktuelle Relativgeschwindigkeit zwischen Ball und Luft.

Ein Volleyball hat die Masse von 0,27 kg und einen Umfang von 67 cm, aus dem die Querschnittsfläche \(A \) berechnet werden muss.

Das erweiterte Modell sieht etwa so aus. In \(F_{\text{reib}} \) wird die Reibungskraft berechnet, daraus dann die Beschleunigung \(a_{\text{reib}} \).

Heikel ist nur die Berechnung der Gesamtbeschleunigung \(a \). Diese setzt sich nämlich nicht immer gleich zusammen. Wenn der Körper in die Höhe steigt d.h. \(v > 0 \) ist, bewirken \(g \) und \(a_{\text{reib}} \) in gleicher Weise eine Veränderung der Geschwindigkeit \(v \) und müssen wegen des Outflows bei \(v \) positiv sein \(a = g + a_{\text{reib}} \); wenn der Körper fällt, wirkt die Reibungskraft entgegengesetzt wie das Gewicht; deshalb müssen in diesem Fall \(g \) und \(a_{\text{reib}} \) ein entgegengesetztes Vorzeichen haben d.h. es muss dann \(a = +g +(-a_{\text{reib}}) = g – a_{\text{reib}} \) heißen. Links oben sieht man das Eigenschaftenfenster der Variablen \(a \), wo die Definition mit der eben erläuterten Bedingung gemacht werden muss.

1) Mein eigenes Modellfenster :

2) Meine Simulation im Diagramm „y(t)” für \(v = 15 \) bzw. 30 m/s, ohne Reibung, bei Abwurf_h=0 m; die Reibung wird ausgeschaltet, indem man \(C_w = 0 \) setzt.

Frage: Um welchen Faktor vergrößert sich ohne Reibung die Steighöhe bei einer Verdopplung der Abwurfgeschwindigkeit? Antwört:
3) Meine Simulation im Diagramm „v(t)“ für \(v_{\text{Abwurf}} = 30 \text{ m/s} \), Abwurf_h=20m und für die Cw-Werte 0 bzw. 0.5:

Fragen:
(1) Wie lange dauert der Wurf ohne Reibung?
(2) Wie groß ist ohne Reibung der Betrag der Aufprallgeschwindigkeit? Warum ist diese größer als die Abwurfgeschwindigkeit?
(3) Wie lange dauert dieser Wurf mit Reibung?
(4) Warum weicht der v-Graph mit Reibung besonders stark in der Anfangsphase und in der Endphase von der Richtung des v-Graphen ohne Reibung ab?

Vervollständige: Mit Reibung nimmt die Geschwindigkeit in der Steigphase \(\dot{v} \) schneller \(v \) ab als ohne Reibung, in der Sinkphase nimmt sie hingegen \(\ddot{v} \) langsamer \(v \) zu.

3.2.4 Der schief e Wurf

Arbeitsteam:

Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Weitere Tipps und Infos:

a) Zum Modell

In einem neuen Modellfenster soll das unten abgebildete Modell erstellt werden:

Wie eigentlich bei allen Bewegungsmodellen ist auch hier die unabhängige Variable die Zeit \(t \). Sie soll vorerst mit einer Schrittweite \(dt=0.01 \) von 0 bis 10 laufen. Wenn das Modell richtig arbeitet, werden wir im Dialog der Modelleinstellungen die Stoppbedingung \(y<=0 \) einbauen und aktivieren.

Wir brauchen auch hier die Konstanten \(g \) und \(h_{\text{Abwurf}} \) sowie \(v_{\text{Betrag}} \) und \(\alpha \), das den Abwurfwinkel zwischen der Horizontalen und der Richtung des Geschwindigkeitsvektors in Grad repräsentieren soll.
Die Anfangswerte für v_x und v_y müssen mit Hilfe der Winkelfunktionen $\sin(x)$ bzw. $\cos(x)$ aus v und alfa berechnet werden. Die Bestandsgröße v_x bleibt hier konstant, v_y verringert wegen des Outflows fortwährend seinen Wert. Wenn v_y negativ wird, führt das dazu, dass auch der anfänglich positive Inflow negativ wird und der geworfene Körper wieder sinkt.

Startwerte für h_{Abwurf} könnte 10, für v_{Betrag} 30 und für alfa 50 sein. Den g-Wert holen wir aus der von Coach6 angebotenen Konstantenliste oder wir geben dort einfach 9.81 ein.

b) Zum Diagramm „Wurf bahn und Geschwindigkeit“

horizontale Achse: Variable x mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable y mit einer Skalierung von 0 bis 50; blau
zweite vertikale Achse: hier soll die Gesamtgesc hwindigkeit v in roter Farbe angezeigt werden; dieses v muss zuerst aber in der Diagrammtabelle berechnet werden. Dazu ordnen wir der nächsten freien Spalte C3 die Variable v_x und der Spalte C4 die Variable v_y zu. Die Spalte C5 wird nun über eine Formel mit der Diagrammtabelle verbunden; man wählt deshalb als „Connection“ „Formula“ aus und gibt mit Hilfe des Formeleditors die bekannte Formel zur Berechnung des Betrages eines Vektors ein: $\sqrt{v_x^2+v_y^2}$.

Damit die Wurfbahn nicht verzerrt erscheint, muss das Kontrollkästchen „Keep the same ratio“ im „Create/Edit diagram..“-Dialog aktiviert werden.

c) Zur unabhängigen Tabelle „Table 1“

Damit wir bei diesem Projekt auch ein paar Energieüberlegungen anstellen können, wollen wir für einen Körper der Masse 1 kg die potentielle, die kinetische und die gesamte Energie für jede Position der Wurfbahn berechnen. Deshalb stellen wir in dieser Tabelle die $t(s)$, $x(m)$, $y(m)$, $v(m/s)$, $E_{pot}(J)$, $E_{kin}(J)$ und $E_{ges}(J)$ dar. Die nötigen Energieformeln sind sicher bekannt.

1) Mein eigenes Modelfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modelfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseite. Wenn das Modellfenster „undocked“ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Wurfbahn und Geschwindigkeit“ für die Startwerte h_{Abwurf} = 10m, v_{Betrag} = 30m/s und alfa = 50Grad:

Fragen zum Wurf ohne Luftreibung:

(1) Wie groß ist die Wurflänge und die Höhe des Scheitelpunktes der Wurfbahn?
(2) Warum ist die Aufprallgeschwindigkeit größer als die Abwurfgeschwindigkeit?
(3) Wie groß wäre die kinetische Energie eines 800g schweren Speers, der so weit „geflogen“ ist?

(4) Um welche Energie ist die kinetische beim Aufprall größer als beim Abwurf?

3) Meine Simulation im Diagramm „Wurfbahn und Geschwindigkeit“ bei v_Betrag = 30 m/s und h_Abwurf=0m für die Winkel alfa von 30, 40, 45, 50, 60 und 70 Grad: Stelle zuerst die Anzeige der Geschwindigkeit auf „invisible“, damit das Diagramm nicht überladen wird.

Vervollständige: Ohne Luftreibung wird bei \(\alpha = 45 \) Grad die größte Wurfweite erzielt. Gleich weit wirft man, wenn man um denselben Winkel von \(\alpha \) diesem Idealwinkel \(\alpha \) nach oben oder unten abweicht.

4) Entwickle eine Simulation, welche verdeutlicht, dass die Wurfweite bei konstantem Abwurfwinkel vom Quadrat der Abwurfgeschwindigkeit abhängt und dokumentiere diese hier.

3.2.5 Der Brems- und Anhalteweg

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Mache ein Modell, mit dem man im ersten Diagramm die Abhängigkeit der Geschwindigkeit vom Weg darstellen kann. Im zweiten Diagramm soll die Geschwindigkeit als Funktion der Zeit sichtbar werden. Fahrgeschwindigkeit, Reaktionszeit und Bremsverzögerung sollen in Simulationen variiert und ihr Einfluss auf den Weg untersucht werden können.

Weitere Tipps und Infos:

a) Zum Modell

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable \(t \) soll die Werte von 0 bis 15 durchlaufen, eine brauchbare Schrittweite ist 0.01. Damit das Variablensymbol für \(t \) auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible..“ aktiviert sein. Die Modellvariable \(a \) wird durch die zwei Konstanten ReaktionsZeit und Wert_\(a \) und durch die unabhängige Variable \(t \) bestimmt. Die Definition von \(a \) erfolgt also mit Hilfe einer Bedingung, die im Eigenschaftenfenster bei „Use condition“ mit Hilfe des Formeleditors eingetragen wird. Solange die Zeit \(t \) kleiner oder gleich der Reaktionszeit ist, ist der Wert von \(a \) gleich Null (es wird nicht gebremst), danach ist er gleich dem Wert der Konstanten Wert_\(a \).

Die Bestandsvariable (state variable) \(v \) wird durch einen Outflow verändert; dies bedeutet, dass positive Beschleunigungswerte die Geschwindigkeit vermindern.
Die Bestandsvariable \(x \) wird durch einen \textit{Inflow} verändert; d.h. positive Geschwindigkeitswerte vergrößern den Weg. Der Anfangswert des Weges \(x \) ist Null, der Anfangswert von \(v \) ist durch die Konstante \(v_{\text{km/pro_h}} \) bestimmt; \(v_{\text{km/pro_h}} \times 3.6 \) lautet die \textit{Initialisierungszeile} von \(v \). Startwert der Konstanten \(v_{\text{km/pro_h}} \) sei 20\times3.6; so hat \(v \) den „schönen“ Wert 20 m/s.

Zeichne zuerst alle Symbole und Verbindungspfeile ins Modellfenster und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von \(a \) zum \textit{Outflow} von \(v \) gezeichnet ist, ist dort schon alles erledigt. Ein \textit{Flow} ist eine Änderungsrate, die angibt, um wie viel sich die Bestandsgröße während der Einheit der unabhängigen Variablen verändert. Die wirkliche Änderung einer Bestandsgröße bei der iterativen Durchrechnung des Modells ist dann bezogen auf ein „Step interval“ gleich dem Flow multipliziert mit dem Wert dieses Intervalls. Das bedeutet etwa für den Outflow dieses Modells: der Flow ist \(a \); die Änderung während eines Zeitintervalls ist \(a \times dt \).

\textbf{b) Zu den Diagrammen}

\textbf{Diagramm 1: „\(v = f (\text{Weg}) \)“}

- horizontale Achse: Variable \(x \) mit Skalierung von 0 bis 130
- erste vertikale Achse: Variable \(v \) mit Skalierung von 0 bis 30; \textit{rot}
- zweite vertikale Achse: hier wollen wir die Geschwindigkeit in km/h anzeigen; dazu rechnen wir in der der Spalte C3 dieser Diagrammtabelle die Geschwindigkeit \(v \) in km/h um; als „Connection“ dieser Spalte ist „Formula“ anzuwählen, bei „Quantity geben wir \(v \text{ in km/h} \) ein, bei „Unit“ verzichten wir auf einen Eintrag und bei „Formula“ muss die Umrechnungsformel eingegeben werden, die da lautet: \(v \times 3.6 \) oder \(C2 \times 3.6 \). Für den Maximalwert tragen wir 108 ein, weil 108 = 30\times3.6 ist und weil sich so der grüne Geschwindigkeitsgraph in km/h unter dem Geschwindigkeitsgraphen in m/s versteckt. Trotzdem wird beim Scannen die Geschwindigkeit in m/s und in km/h in verschiedenen Farben angezeigt.

\textbf{Diagramm 2: „\(v = f (\text{Zeit}) \)“}

- horizontale Achse: unabhängige Variable \(t \) mit Skalierung von 0 bis 15
- erste vertikale Achse: Variable \(v \) mit Skalierung von 0 bis 30; \textit{rot}

\textbf{1) Mein eigenes Modellfenster :}

2) Mein Diagramm „v = f (Weg)” für die angegebenen Startwerte: Wert_a = 4m/s², v_km_pro_h = 90 km/h:

Fragen:

(2) Während die Geschwindigkeit zeitlich linear abnimmt, gilt dies für die Abnahme der Geschwindigkeit bezogen auf den Weg bei weitem nicht. Warum ist die Geschwindigkeitsabnahme auf den ersten Metern des Bremsweges am geringsten, obwohl in jeder Sekunde die Geschwindigkeit um a m/s kleiner wird?

(3) Wie groß ist die Geschwindigkeit 10m vor dem Stillstand absolut und in % der ursprünglichen Fahrgeschwindigkeit?

3) Meine Simulation im Diagramm „v = f (Weg)” für Fahrgeschwindigkeiten von 30, 60 und 90 km/h bei einer Reaktionszeit von 0 Sek. und einem Wert_a=4m/s²:

Vervollständige: Bei doppelter Geschwindigkeit vervierfacht sich der Bremsweg, bei dreifacher Geschwindigkeit wird der Bremsweg quadratisch größer. Der Bremsweg hängt vom Quadrat der Geschwindigkeit ab.

In der Fahrschule lernt man eine Näherungsformel für den Bremsweg B:

\[B[m] = Z[km/h] \cdot Z[km/h] = Z \cdot Z; \]

Bremsweg in m ist Zehnerzahl der Geschwindigkeit in km/h mal Zehnerzahl der Geschwindigkeit in km/h. z.B.: v = 60 km/h \(\Rightarrow \) Z = 6 \(\Rightarrow \) B = 36 m

Frage: Wie gut passt diese Näherungsformel? Wann gilt diese aber nur?

4) Meine Simulation im Diagramm „v = f (Weg)” für Geschwindigkeiten von 30, 50, 80 und 100 km/h bei einer Reaktionszeit von 1 Sek. und einem Wert_a=4m/s²:

In der Fahrschule lernt man eine Näherungsformel für den Anhalteweg A:

\[A[m] = Z[km/h] \cdot (Z[km/h] + 3) = Z \cdot (Z+3); \]

z.B.: v = 80 km/h \(\Rightarrow \) Z = 8 \(\Rightarrow \) A = 8*(8+3) = 8*11 = 88 m

Frage: Wie gut passt diese Näherungsformel? Unter welchen Voraussetzungen gilt sie aber nur?

5) Meine Simulation im Diagramm „v = f (Weg)” für Verzögerungen von 4, 3 und 2 m/s² bei einer Reaktionszeit von 0 Sek. und einer Geschwindigkeit von 72 km/h:

Frage: Auf welchen Wert erhöht sich der Bremsweg, wenn die Bremsverzögerung halbiert wird?

Vervollständige: Der Bremsweg ist indirekt proportional zur Bremsverzögerung!

Frage: Wie heißt die exakte Formel zur Berechnung des Bremsweges?

3.2.6 Das horizontale Federpendel

Arbeitsteam: Datum und Ort der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Eine Masse, z.B. eine kleine Kugel, ist zwischen zwei gleichartige Federn „eingespannt“. Die Masse wird in eine Richtung horizontal ausgelenkt und schwingt dann hin und her.
Die Kugel „fliegt“ bzw. gleitet reibungsfrei hin und her; zuerst sehen wir von der inneren Reibung in den Federn ab, dann aber setzen wir eine zur Geschwindigkeit proportionale Reibungskraft an.

Die beiden Federn sind völlig gleich; \(k_1 = k_2 \) und \(k_1 + k_2 = k \). Die sich einstellende Schwingung soll im Diagramm untersucht werden, wobei wir uns im speziellen für die Periodendauer und die Frequenz interessieren. Auch in den Graphen der gedämpften Schwingung soll eine mathematische Funktion eingepasst und deren Parameter ausgewertet werden.

Weitere Tipps und Infos:

a) Zum Modell:

Beim Einrichten der Aktivität lassen wir die Standard-Einstellung für das Winkelmaß unverändert, da man damit Schwingungen besser bearbeiten kann.

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden: Unabhängige Variable des Modells ist auch hier die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=0.01 \) von 0 bis 15 laufen. Wenn wir diese Festlegungen im Dialog der Modelleinstellungen (Model Settings) treffen, wählen wir als Berechnungs methode diesmal bewusst RK2 (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) aus. Das aktivierte Berechnungsverfahren wird im Modellfenster links unten auch angezeigt.

Wie bei jeder Bewegung bedarf es einer Beschleunigung \(a \), welche für eine Veränderung der Geschwindigkeit \(v \) sorgt, die ihrerseits für einen Weg, hier für eine Auslenkung \(\Delta_x \), verantwortlich ist. Die Beschleunigung a wird unter Anwendung des zweiten Newtonschen Axioms mit der **Federkraft** und der Masse \(m \) definiert. Die Federkraft muss mit einem minus definiert werden (Federkraft: \(-k*\Delta_x \)), da die Kraft immer entgegengesetzt zur Auslenkung wirkt. Startwert von \(v \) ist Null, Startwert von \(\Delta_x \) sei 0.3 (wir haben lauter SI-Einheiten in Verwendung), da die schwingende Masse zu Beginn ja ausgelenkt sein muss, wenn sich eine Schwingung einstellen soll. Passende Werte der Konstanten: \(m = 0.1 \) kg; \(k = 0.2 \) N/m. Die Zahl der Dezimalstellen sollte bei allen Variablen-Symbolen des Modells auf mindestens 3 gestellt werden.

Wenn man nach Fertigstellung des Modells einfach eine Durchrechnung startet, sieht man an den angezeigten Zahlenwerten im Modellfenster die Schwingung eigentlich nicht. Man müsste mit dem ‚Run Controller‘ die Durchrechnungsgeschwindigkeit herunter setzen. Am einfachsten sieht man hier die Funktionstüchtigkeit des Modells, wenn man gleich das Diagramm (horizontal \(t \) von 0 bis 15, vertikal \(\Delta_x \) von -0.5 bis +0.5) erstellt.
Wenn man das horizontale Federpendel auf ein gedämpftes erweitern will, könnte man dies in einer neuen Aktivität wie links abgebildet machen.

Die zweite wirkende Kraft ist jetzt F_{Reibung}. Sie soll proportional v sein und hat als Definition $-\text{Reib}_\text{Const} \cdot v$. Auch hier ist ein Minus nötig, da diese Kraft immer entgegen gesetzt zur Richtung der Geschwindigkeit wirkt. Ein passender Zahlenwert für Reib_Const ist 0.03. Die beiden Teilkräfte werden zu F_{ges} zusammengefasst und erst daraus wird die wirksame Beschleunigung a berechnet.

b) Zum Diagramm „Delta_x als Funktion der Zeit t“

horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 15
erste vertikale Achse: Variable Δ_x mit einer Skalierung von -0.5 bis 0.5; blau

Auch bei der gedämpften Feder-schwingung kann dieses Diagramm verwendet werden.

c) Zur unabhängigen Tabelle „Table 1“

Für das leichtere Ablesen der Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der t, Δ_x, v und a angezeigt werden.

1) Mein eigenes Modellfenster:

2) Mein Diagramm „Delta_x als Funktion der Zeit t“ für die Startwerte $m=0.1 \text{ kg}, k = 0.2 \text{N/m}, x=0.3 \text{m}$ und $\text{Reib}_\text{Const}=0 \text{s/m}$:

Ändere danach die Skalierung der Zeitachse und die Durchrechnungszeit kurzfristig auf 60s und überzeuge dich, dass benachbarte Maxima äquidistant sind. Gib die durch Scannen ermittelte Schwingungsdauer T und die Frequenz f an.

Vervollständige:

Periodendauer T und Frequenz f eines Federpendels sind $\varphi \varphi$ konstant φ. Ihre Werte werden von der Masse und von der Federkonstante bestimmt.

3) Mein Simulations-Diagramm für Massen von $m = 0.1, 0.2$ und 0.4kg bei den Startwerten $k = 0.2 \text{N/m}, x=0.3 \text{m}$ und $\text{Reib}_\text{Const}=0 \text{s/m}$:

Vervollständige: Bei vierfacher Masse ist die Periodendauer genau $\varphi \varphi$ doppelt φ so groß. Die Periodendauer eines Federpendels ist direkt proportional zur $\varphi \varphi$ Quadratwurzel φ der Masse.

4) Mein Simulations-Diagramm für Federkonstanten von $k = 0.2, 0.4$ und 0.8N/m bei den Startwerten $m = 0.1 \text{kg}, x=0.3 \text{m}$ und $\text{Reib}_\text{Const}=0 \text{s/m}$:
Vervollständige: Bei vierfacher Federkonstante ist die Periodendauer genau \(\Psi \Psi \) halb \(\Psi \) so groß. Die Periodendauer eines Federpendels ist \(\Psi \Psi \) indirekt proportional \(\Psi \) zur Quadratwurzel von \(k \).

Es gilt offensichtlich: \(T \sim \sqrt{\frac{m}{k}} \); exakt gilt: \(T = 2\pi \sqrt{\frac{m}{k}} \).

5) **Mein Function-Fit-Fenster für die gedämpfte Schwingung** mit allen unseren Startwerten (0.3m Auslenkung, 0.1kg Masse, 0.2N/m Federkonstante und 0.03s/m Reib_Const).

Verlängere dazu zuerst die Zeitachse auf 15 Sekunden und passe den Funktionstyp \(f(x) = a\exp(-b*x)\sin(c*x+d)+e \) ein, wobei die Parameter \(a=0.3 \) und \(e=0 \) gesetzt werden sollen.

Der Parameter \(c \) ist der Zahlenwert für die Kreisfrequenz \(\omega \). Berechne daraus die Frequenz und Periodendauer der Schwingung. Es gilt: \(\omega = 2\pi f = 2\pi/T \)

Vervollständige: Auch bei einer gedämpften Schwingung sind \(\Psi \Psi \) Periodendauer und Frequenz \(\Psi \) konstant.

3.2.7 Das vertikale Federpendel

Arbeitsteam: Datum und Ort der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

An eine senkrecht hängende Schraubenfeder wird ein Massenstück gehängt. Die Masse beginnt auf und ab zu schwingen, bis der Schwingungsvorgang zum Stillstand kommt und das Massenstück ruhig an einer gedehnten Feder hängt.

Masse und Federkonstante sind bekannt. Untersuche diese Pendelbewegung mit Modell und Diagramm und verifiziere die Simulationsergebnisse durch ein reales Experiment.

Weitere Tipps und Infos:

a)Zum Modell:

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Bei Schwingungen ist es zweckmäßig, für die beiden Bestandsgrößen Geschwindigkeit \(v \) und Weg (hier \(Delta_y \)) jeweils Inflows einzusetzen. Unabhängige Variable des Modells ist auch hier die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=0.005 \) von 0 bis 10 laufen.

Da wir die Schwingung untersuchen wollen, wählen wir als Berechnungsmethode RK2 (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) im Dialog der Modelleinstellungen aus.
Wie bei jeder Bewegung bedarf es einer Beschleunigung a, welche für eine Veränderung der Geschwindigkeit v sorgt, die ihrerseits für einen Weg, hier für eine Auslenkung Δ_y, verantwortlich ist. Die Beschleunigung a wird unter Anwendung des zweiten Newtonschen Axioms mit der wirkenden Gesamtkraft F_{ges} und der Masse m definiert. Die Federkraft muss mit einem minus definiert werden (Federkraft: $-k \cdot \Delta_y$), da die Kraft immer entgegengesetzt zur Auslenkung wirkt. Auch die Festlegung des Gewichtes braucht ein negatives Vorzeichen, weil die Variable Gewicht immer nach unten orientiert ist.

Die Festlegung des Startwertes von v erfolgt über die Konstante v_{Start} und ist Null, jener von Δ_y über Start_{Δ_y} und ist ebenfalls Null. Das Gewicht der Masse $m = 0.1 \text{kg}$ wird die Bewegung initiieren. Für die Federkonstante k ist 3N/m ein passender Wert. Die Zahl der Dezimalstellen stellen wir bei allen Variablen-Symbolen des Modells auf mindestens 3 ein.

Die Funktionstüchtigkeit des Modells sieht man am schnellsten, wenn man gleich das Diagramm (horizontal t von 0 bis 10, vertikal Δ_y von -1 bis +0.5) macht.

Wenn man das oben modellierte Federpendel auf ein gedämpftes erweitern will, könnte man dies – ev. in einer neuen Aktivität - wie links abgebildet machen. Die dritte wirkende Kraft ist jetzt F_{Reibung}. Sie soll proportional zu v sein und hat als Definition $-\text{Const}_{\text{Reib}} \cdot v$. Auch hier ist ein Minus nötig, da diese Kraft immer entgegen gesetzt zur Richtung der Geschwindigkeit wirkt. Ein passender Zahlenwert für $\text{Const}_{\text{Reib}}$ ist 0.05. Die drei Teilkräfte werden zu F_{ges} zusammengefasst und erst daraus wird die wirksame Beschleunigung a berechnet.

b) Zum Diagramm „Δ_y als Funktion der Zeit t“

horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 20, erste vertikale Achse: Variable Δ_y mit einer Skalierung von -1.0 bis 0.5, blau

c) Zur unabhängigen Tabelle „Table 1“

Für das leichtere Ablesen interessierender Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der t, Δ_y, v und a angezeigt werden.

1) Mein eigenes Modellfenster:

2) Mein Diagramm „Delta_y als Funktion der Zeit t“ für die Startwerte m=0.1 kg, k = 3N/m, Delta_y_Start=0 m und Reib_Const=0.05 s/m:

Vervollständige:
Auch die Periodendauer T und die Frequenz f eines vertikalen Federpendels sind *konstant*. Ihre Werte werden allein von der Masse und von der Federkonstante nach der gleichen Formel wie beim horizontalen Federpendel bestimmt. Nach Beendigung des Schwingungsvorganges zeigt die Feder dieselbe Längenänderung, die auch ohne Schwingung beim Anhängen der Masse an diese Feder entsteht.

Auch hier gilt: \[T = 2\pi \sqrt{\frac{m}{k}}. \]

3) Mein Function-Fit-Fenster für die gedämpfte Schwingung mit unseren Startwerten.
Passe den Funktionstyp \(f(x) = a*\exp(-b*x)*\sin(c*x+d)+e \) ein, wobei wir uns speziell für die Parameter a, b und e interessieren. Sorge dafür, dass a positiv ist. Falls Co-ach6 beim automatischen Einpassen ein Minuszeichen liefert, lösche es weg und fixiere den positiven Wert durch ein Häklein im Kontrollkästchen daneben.

Der Parameter b ist der Zahlenwert für die **Dämpfungskonstante**, die die Amplitude der Auslenkung verringert. Notiere diesen Wert.

Der Parameter e ist der Zahlenwert für die **Längenänderung**, die nach dem Aus- schwingen des Pendels besteht. Überprüfe diesen Wert durch die Berechnung der Längenänderung mit dem **Federkraftgesetz** (\(F = k*\Delta y = m*g \)).

4) Mein Diagramm inklusive der beiden Einhüllenden für die gedämpfte Schwingung:
Stelle im Diagramm mit den nächsten freien Spalten der Diagrammtabelle die beiden Einhüllenden dar, die folgende Gleichungen haben:
\[f_1(t) = a*\exp(-b*t)+e \text{ und } f_2(t) = -a*\exp(-b*t) + e \]; beachte das Minus beim Wert vom Parameter e !!

5) Anpassung des Modells an ein Experiment:
Mit einem einfachen Experiment kann das Modell verifiziert werden. Die Federkonstante k der eingesetzten Feder kann dabei statisch oder dynamisch ermittelt werden. Wenn im Modell für k bzw. m die Werte der tatsächlich Verwendung findenden Feder bzw. Masse eingesetzt werden, sagt das Modell die beobachtbare Längenänderung voraus.

3.2.8 Das Fadenpendel

Arbeitsteam:

Datum und Ort der Durchführung:

Kurzbeschreibung der Aufgabenstellung:
Ein Massenstück hängt an einem Faden und wird seitlich bei gespannter Schnur ausgelenkt. Nach dem Loslassen des Massenstückes schwingt dieses auf einem Kreisbogen hin und
her. Obwohl das Aufsteigen und das Hinabfallen der Masse die Schwingung antreibt, interessieren wir uns für jene Schwingung, die in der horizontalen x-Richtung zu beobachten ist.

Untersuche diese Pendelmethode und studiere die Phasenlage zwischen Auslenkung, Geschwindigkeit und Beschleunigung in x-Richtung.

Weitere Tipps und Infos:

a) Zum Modell:

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Beim Anlegen der Aktivität oder über den Hauptmenüpunkt 'Options', dann 'Activity options..' und Register 'Advanced' soll das Winkelmaß auf Degree gesetzt werden.

Es ist zweckmäßig, für die beiden Bestandsgrößen Geschwindigkeit und Weg (hier Auslenkung_x) jeweils einen Inflow einzusetzen.

Unabhängige Variable des Modells ist die Zeit t. Sie soll mit einer Schrittweite $dt=0.01$ von 0 bis 10s laufen. Da wir eine Schwingung untersuchen wollen, wählen wir im Dialog der Modellleistungen als Berechnungsmethode das Runge Kutta Verfahren (RK2) aus, bei dem die Intervallschritte halbiert werden.

Die Beschleunigung a_x ist die Normal-Projektion der treibenden Komponente von g (kurz: g_{treib}) in die x-Richtung und ist deshalb als $a_x = g_{treib} \cos(alfa)$ definiert. Zur Festlegung der Variablen g_{treib} brauchen wir die Sinusfunktion; wie aus der Skizze zu sehen ist, gilt $g_{treib} = -g \sin(alfa)$, wobei das wichtige Minus anzeigt, dass diese Beschleunigung immer gegen die aktuelle Auslenkung orientiert ist.

Die Variable $alfa$ wird über die Pendel_Länge und die Auslenkung_x des Pendels definiert. In dem rechtwinkligen Dreieck mit diesen Seiten gilt für den Winkel: $alfa = \text{ArcSin}(\text{Auslenkung}_x/\text{Pendel}_Länge)$

Passende Konstantenwerte: Pendel_Länge=1.5m, Start_x=0.6m und v_Start= 0m/s. Die Zahl der Dezimalstellen stellen wir überall außer bei den Konstanten des Modells auf 3 ein.

Die Richtigkeit des Modells sieht man am schnellsten, wenn man gleich das Diagramm (horizontal t von 0 bis 10, vertikal Auslenkung_x von -1 bis +1) zur Kontrolle einsetzt.

Links ist das Modell des gedämpften
Fadenpendels dargestellt. Während der Durchrechnung des Modells werden die aktuellen Werte der Variablen und Konstanten angezeigt. Man bezeichnet das als **Monitoring**. Neu dazugekommen ist hier die Beschleunigung a_{Reib}, welche aus der Reibungskraft F_{Reib} und der Masse m (0,50 kg) berechnet wird. Die Konstante $Const_{Reib}$ hat mit 0.10 einen passenden Wert.

b) **Zum Diagramm „$x(t)$ $v_x(t)$ und $a_x(t)$“**
horizontale Achse: unabhängige Variable t mit einer Skalierung von 0 bis 10; wenn wir die gedämpfte Schwingung untersuchen, wählen wir als Skalierung von 0 bis 30.

erste vertikale Achse: Variable $Auslenkung_x$ mit einer Skalierung von -1 bis 1; blau
zweite vertikale Achse: Variable v_x (rot) und Variable a_x (grün) mit einer Skalierung von -10 bis 10.

c) **Zur unabhängigen Tabelle „Table 1“**
Für das leichtere Ablesen interessierender Zahlenwerte beim Scannen machen wir eine unabhängige Tabelle, in der t, $Auslenkung_x$, v_x und a_x angezeigt werden.

1) **Mein eigenes Modellfenster**
Hier her kann zuerst das Modell ohne Reibung und dann jenes mit Reibung übertragen werden.

2) **Mein Diagramm „$x(t)$ $v_x(t)$ und $a_x(t)$“** ohne Reibung für $m=0.50$ kg und eine Pendellänge von 1.5m:
Alle drei dargestellten Größen ändern sich nach Sinusfunktionen, die aber horizontal zu einander verschoben sind. Auffallend ist die nötige unterschiedliche Skalierung der beiden vertikalen Achsen.

Fragen:
(1) Welche Periodendauer bzw. welche Frequenzen haben die Änderungen der drei Größen? Überprüfe das „mit freiem Auge“, mit Scannen oder/und durch das Einpassen der mathematischen Funktion $f(x)=a*\sin(b*x+c)+d$ in jeden der drei Graphen; der Parameter b ist dabei jeweils der Wert der Winkelgeschwindigkeit = Kreisfrequenz $\omega=2\pi f = 2\pi /T$. Schreibe die Ergebnisse für T, f und ω mit den richtigen Maßeinheiten an.

(2) Die Schwingungen von Auslenkung, Geschwindigkeit und Beschleunigung laufen zeitlich versetzt zueinander ab. **Vervollständige:**
Wenn die Auslenkung **maximal** ist, ist die Beschleunigung $\Psi\Psi$ minimal Ψ und die Geschwindigkeit $\Psi\Psi$ gleich Null Ψ.

Wenn die Auslenkung **minimal** ist, ist die Beschleunigung $\Psi\Psi$ maximal Ψ und die Geschwindigkeit $\Psi\Psi$ gleich Null Ψ.

Wenn die Auslenkung **Null** ist, ist die Beschleunigung $\Psi\Psi$ auch Null Ψ und die Geschwindigkeit $\Psi\Psi$ maximal Ψ oder $\Psi\Psi$ minimal Ψ.

Auslenkung und Beschleunigung schwingen „gegenphasig“; sie haben einen Phasenunterschied π, was einer halben Periodendauer entspricht.
Dabei gilt: $T : T/2 : T/4$ verhält sich gleich wie $2\pi : \pi : \pi/2$ gleich wie $360^\circ : 180^\circ : 90^\circ$ ist etwa gleich wie $6,28 : 3,14 : 1,57$.

Seite 128
(3) Der Phasenunterschied von Auslenkung und Geschwindigkeit ist halb so groß wie jener zwischen Auslenkung und Beschleunigung.

In der Mathematik lernt man für Funktionsgraphen auch Schieberegeln. Horizontal verschiebt sich der Graph einer Funktion, wenn das Argument um eine positive Konstante vergrößert oder verkleinert wird. Die Addition der Konstanten verschiebt den Graphen nach links, die Subtraktion nach rechts.

Kurz: Der Graph von $f(x + h)$ ist gegenüber dem Graphen von $f(x)$ um h nach links verschoben; jener von $f(x - h)$ ist gegenüber $f(x)$ um h nach rechts verschoben.

Ein scharfer Blick aufs Diagramm zeigt, dass die Auslenkung eigentlich am besten mit einer Cosinusfunktion beschrieben werden kann, und dass die Cosinusfunktion eine um eine Viertelperiode nach links verschobene Sinusfunktion ist. Dies könnte man wie folgt formulieren:

$$y(t) = r \cos(\omega t) = r \sin(\omega (t+T/4)) = r \sin(\omega t+(2\pi/T) T/4)) = r \sin(\omega t+\pi/2)$$

Nach der horizontalen Schieberegel ist die Sinusfunktion unserer Geschwindigkeit einfach um eine halbe Periode nach rechts verschoben.

$$v(t) = v_0 \sin(\omega t-(2\pi/4)) = v_0 \sin(\omega t-(\omega T/2)) = v_0 \sin(\omega t-\pi)$$

Die Sinusfunktion unserer Beschleunigung ist um eine Viertelperiode nach rechts verschoben: Vervollständige:

$$a(t) = a_0 \sin(\omega t-(2\pi/4)) = a_0 \sin(\omega t-(\omega T/2)) = a_0 \sin(\omega t-\pi/2)$$

3) Mein ,Function-Fit‘-Diagramm, das in $a_x(t)$ die mathematische Funktion einpasst. Schreibe die Funktionsgleichung für $a_x(t)$ auch an.

4) Mein Simulations-Diagramm für Pendellängen von 4, 8 und 16 m: Schalte dazu die beiden Größen v_x und a_x auf der zweiten vertikalen Achse auf 'invisible'.

Betrachte das Diagramm hinsichtlich Periodendauer und vervollständige: Wenn man die Pendellänge vervierfacht, verdoppelt sich die Periodendauer. Die Periodendauer ist direkt proportional zur Quadratwurzel der Pendellänge.

5) Mein Simulations-Diagramm für Schwerebeschleunigungen von 20, 10 und 5 m/s² bei einer Pendellänge von 10m: Schalte dazu die beiden Größen v_x und a_x auf der zweiten vertikalen Achse auf 'invisible'; verlängere eventuell die Zeitachse auf 15 Sekunden.

Betrachte das Diagramm hinsichtlich Periodendauer und vervollständige: Wenn man die Schwerebeschleunigung auf ein Viertel verringert, vergrößert sich die Periodendauer auf das Doppelte. Die Periodendauer ist indirekt proportional zur Quadratwurzel der Schwerebeschleunigung.

Frage: Wie heißt die Formel für die Periodendauer eines Fadenpendels bei kleinen Winkelausschlägen?

3.2.9 Satellitenbahnen

Arbeitsteam:

Datum und Ort der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Mit dem Newtonschen Gravitationsgesetz kann bekanntlich
die Entstehung der Planeten- und Satellitenbahnen erklärt werden. Da sich Planeten und Satelliten jeweils in einer Bahnebene bewegen, haben wir es auch hier mit einem zweidimensionalen Problem zu tun. Der radial wirkende Beschleunigungsvektor muss in zwei Komponenten zerlegt werden, was aber die einzige kleine mathematische Herausforderung darstellt:

\[a_x = -\frac{GM_x}{r^3} \quad \text{und} \quad a_y = -\frac{GM_y}{r^3} \quad \text{mit} \quad G \quad \text{heißt in Coach GC!} \]

Mit einem Modell und zwei Diagrammen erforscht werden, wie bei dieser Bewegung die Gestalt der Bahn von der Geschwindigkeit und von der Entfernung des Satelliten zur Erde abhängt. Außerdem soll die Schwankung der Bahngeschwindigkeit bei einem oder mehreren Umläufen sichtbar werden.

Weitere Tipps und Infos:

a) Zum Modell:

In einem neuen Modellfenster soll das hier abgebildete Modell erstellt werden:

Unabhängige Variable des Modells ist die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=5 \) von 0 bis 20000 (vollständig) laufen. Wir wählen als Berechnungsmethode das Runge Kutta Verfahren (RK2) im Dialog der Modelleinstellungen aus.

Die drei Konstanten \(GC, M_{\text{EARTH}} \) und \(R_{\text{EARTH}} \) können direkt aus der Konstantenliste von Coach6 ausgewählt werden (deshalb diese spezielle Schreibweise). Der Startwert von \(v_x \) ist in der Bestandsgröße \(v_x \) als Null definiert. Der Startwert von \(v_y \) wird über die Konstante \(v_y_{\text{Start}} \) bestimmt. Die Konstante \(h_{\text{Start}} \) soll in \(\text{km} \) eingegeben werden und beschreibt die Höhe des Satelliten dort, wo die Berechnung und Darstellung der Bahn begonnen wird. Innerhalb der Bestandsgröße \(x \) muss ihr Startwert dann in Meter umgerechnet und um den Erdradius \((R_{\text{EARTH}}) \) erhöht werden. Der Startwert der Bestandsgröße \(y \) ist Null.

Die Variable \(r \) wird durch die aktuellen Werte von \(x \) und \(y \) definiert; sie ist sehr wichtig für die Definition der beiden Beschleunigungskomponenten \(a_x \) und \(a_y \), deren Formeln weiter oben beschrieben sind.

Trotz der Farben, die die Lesbarkeit des Modells erleichtern sollen, ist dieses Grafikmodus-Modell zumindest auf den ersten Blick nicht sehr übersichtlich.

Im Textmodus-Modell links ist zumindest der Anweisungsteil sehr klar gestaltbar. Bei den Festlegungen der Konstanten und Startwerte im rechten
Teil des Modellfensters muss aber auch schon auf die Reihenfolge geachtet werden.

b) Zu den Diagrammen und der Tabelle

Diagramm „Satellitenbahnen“

Damit die Bahnen nicht verzerrt gezeichnet werden, muss das Kontrollkästchen „Keep the same ratio“ im Diagramm-Edit-Dialog aktiviert werden.

horizontale Achse: Variable \(x \) mit einer Skalierung von \(-70\times10^6\) bis \(30\times10^6\);
erste vertikale Achse: Variable \(y \) mit einer Skalierung von \(-30\times10^6\) bis \(30\times10^6\); \(\text{rot} \)

Die Coach-Schreibweise \(30\times10^6\) bedeutet \(30\times10^6\); \(6.67\times10^{-11}\) steht für \(6.67\times10^{-11}\)

Zuerst arbeiten wir nur mit diesem Diagramm Satellitenbahnen.

Tabelle „Table 1“

Diagrammtabellen haben immer den gleichen Namen wie ihre Diagramme. Standardnamen für unabhängige Tabellen sind Table 1 oder Table 2 u.s.w.

Die Tabelle Table1 soll neben dem Zeilenindex folgende vom Modell berechnete Größen anzeigen: \(t, r, v_x, v_y \) In der nächsten Spalte lassen wir die Bahngeschwindigkeit \(v \) anzeigen, die mittels der Formel \(\sqrt{v_x^2+v_y^2} \) berechnet wird.

Diagramm \(v_Bahn = f (\text{Zeit}) \)

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 30000;
erste vertikale Achse: Größe \(v \), welche als \(\text{Formula } v \) bei „Connection“ zur Auswahl zur Verfügung steht, wenn man davor diese Größe in der Tabelle Table 1 mit Hilfe einer Formel berechnet hat. Skalierung von 0 bis 10000; ein grüner Graph

Die „blaue“ Erde soll als „Imported background graph“ angezeigt werden. Dazu müssen wir diesen Graphen zuerst einmal als normalen Graphen zeichnen lassen. Wenn bei \(h_{\text{Start}} \) Null und bei \(v_y_{\text{Start}} \) 7900 eingeben wird, zeichnet das Modell genau die Erde, da \(v=7900\text{m/s} \) die 1.kosmische Geschwindigkeit, die Kreisbahngeschwindigkeit an der Erdoberfläche ist. Mit ein paar Scan-Klicks kann man sich davon überzeugen.

Durch einem Klick auf die Schaltfläche mit der blauen Diskette wird der Dialog „Save result as…“ aufgerufen und diese aktuelle Bahn abgespeichert. Danach wechseln wir wieder in die ursprüngliche Aktivität und importieren über die Option „Import background graph ..“ des Diagramm-Kontextmenüs diesen Graphen als Grafik in unser Diagramm, wobei wir ihn vor der Übernahme zuerst noch blau einfärben. Falls etwas schief gelaufen sein sollte, kann man die Aktion im Diagramm-Kontextmenü über „Delete background graphs / Imported“ wieder rückgängig machen.

1) Mein eigenes Modellfenster:

2) Mein Diagramm „Satellitenbahnen“ für eine Starthöhe von 100km und bei Startgeschwindigkeiten von 8500, 9500, 10000 und 11000m/s:
Die meisten so entstandenen Satellitenbahnen sind Ellipsenbahnen. Die Bahn für 11000 m/s könnte gerade eine Parabelbahn sein, da diese Geschwindigkeit etwa die Fluchtgeschwindigkeit eines Satelliten ist, wenn er sich 100 km über der Erdoberfläche befindet.

Frage: Was zeigt das Simulationsdiagramm, wenn man für eine Geschwindigkeit von 9000 m/s die Starthöhen von 100 über 1000 bis 2000 km variiert? Antworten verbal.

Vervollständige: Sobald ein Raumschiff durch das Zünden eines Triebwerkes seine Geschwindigkeit verändert, verändert sich \(\Psi \) auch seine Bahn \(\Psi \).

3) **Mein Diagramm** „\(v_{\text{Bahn}} = f (\text{Zeit}) \)“ für eine Startgeschwindigkeit von z.B. 9000 m/s bei einer Starthöhe von 500 km:

Fragen:
(1) Wie groß ist die durch Scannen ermittelte Umlaufzeit in hh:mm:ss für diese Bahn?
(2) Wie groß ist die Geschwindigkeit im Apogeum dieser Bahn? Warum ist sie dort kleiner?

3.2.10 Die ISS (International Space Station)

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Obwohl dies für unser Modell irrelevant ist, sei festgehalten, dass die Bahnebene der ISS gegenüber der Äquatorebene um 51,6° geneigt ist. Im gegenüber der Erde nächsten Punkt ihrer Bahn, dem **Perigeeum**, ist die ISS 350 km, im **Apogeeum** 450 km entfernt.

Verwende das Modell des Satellitenbahn-Projektes und passe auch das dort eingesetzte Diagramm durch eine Änderung der Skalierung der erdnahen Satellitenbahn an. Ermittle die Geschwindigkeiten in Peri- und Apogeeum und die Umlaufzeit der ISS.

Weitere Tipps und Infos:

a) **Zum Modell:**

Da die ISS-Bahnen als erdnahe Bahnen viel kürzer als die mit diesem Modell bisher behandelten Satellitenbahnen sind, können wir die Schrittweite der unabhängigen Variablen \(t \) auf \(dt=1 \) setzen. Die \(t \)-Werte sollen von 0 bis 6000 laufen. Als Berechnungsmethode wählen wir bzw. belassen wird RK2, das Runge Kutta Verfahren mit Intervalhalbierung.

Die Überschrift im Modellfenster kann nach einem Doppelklick editiert werden. Die beiden Inflows bei den Koordinaten sollten mit \(\text{Flow}_x \) und \(\text{Flow}_y \) bezeichnet und angezeigt werden, da wir diese in einer der zwei Tabellen brauchen.

b) Zum Diagramm „ISS-Bahn“

Damit die Bahn nicht verzerrt gezeichnet wird, muss das Kontrollkästchen „Keep the same ratio“ im Diagramm-Edit-Dialog aktiviert werden.

horizontale Achse: Variable \(x \) mit einer Skalierung von \(-10^6\) bis \(12E6\); die obere Grenze der Skalierung wird von \(10^6\) auf \(12E6\) gesetzt, damit die Achsenbeschriftung den Graphen nicht stört.

erste vertikale Achse: Variable \(y \) mit einer Skalierung von \(-8E6\) bis \(8E6\); \(\text{rot} \)

Die Coach-Schreibweise \(-10E6\) bedeutet \(-10*10^6\); \(6.67E-11\) steht für \(6,67*10^{-11}\)

c) Zu den Tabellen

Tabelle Table 1

<table>
<thead>
<tr>
<th>Höhe</th>
<th>(v_x) m/s</th>
<th>(v_y) m/s</th>
<th>(v) m/s</th>
<th>(v_{km/h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>453.106</td>
<td>-11.2</td>
<td>-7618.1</td>
<td>7618.1</td>
</tr>
<tr>
<td>C3</td>
<td>453.106</td>
<td>-2.6</td>
<td>-7618.1</td>
<td>7618.1</td>
</tr>
</tbody>
</table>

Damit in C2 die aktuelle Höhe der ISS in \(\text{km} \) berechnet werden kann, muss der Spalte C1 – wenigstens unsichtbar gemacht - die Variable \(r \) (diese wird vom Modell in m berechnet) zugeordnet sein. Der Wert der Höhe in km ist die Differenz aus \(r \) und Erdradius dividiert durch 1000. Die hier sichtbare blaue Unterlegung der Tabellenzeile kommt daher, dass jetzt gerade der höchste Punkt der Bahn im Scan-Modus angeklickt ist. Falls man nicht in jener Zeile ist, wo \(v_x \) den kleinsten Betrag hat, klickt man in der Tabelle in jene Zeile, wo dies der Fall ist. Dann hat man...
die bestmöglichen Daten dieses wichtigen Punktes der Bahn (Höhe: 253,106km, v: 7618,1m/s=27425km/h) zur Verfügung. Die Spalten C3 und C4 dienen auch dazu, um in C5 den Betrag der Bahngeschwindigkeit v berechnen zu können. Die Umrechnung von v auf \textbf{v}_{\text{km/h}} erfolgt über den Faktor 3,6.

Tabelle Table 2

<table>
<thead>
<tr>
<th>t</th>
<th>dx</th>
<th>dy</th>
<th>ds</th>
<th>SumS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2771</td>
<td>-11.18</td>
<td>-7618.11</td>
<td>7618.11</td>
<td>2127009.11</td>
</tr>
<tr>
<td>2772</td>
<td>-2.61</td>
<td>-7618.11</td>
<td>7618.11</td>
<td>21276509</td>
</tr>
</tbody>
</table>

Die Nutzung der Tabellen-Statistik

Diese Tabellen-Statistik stimmt aber nur, wenn die ISS genau einmal die Erde umrundet. Vor der Auswertung der Tabellenstatistik müssen deshalb wahrscheinlich im Tabellen-Kontextmenü über 'Rows/Delete' alle übrigen Zeilen der Tabelle gelöscht werden. Ab welcher Zeile gelöscht werden muss, muss zuerst durch Scannen oder genaueres Studium der Tabellendaten (v_x ist dort gleich Null) festgestellt werden.

d) Zum Einzeichnen des „blue planet“:

Wenn wir das Diagramm neu angelegt haben, müssen wir noch die Erde einzeichnen.

Die „blaue“ Erde soll als ,\textit{Imported background graph}‘ angezeigt werden. Dazu müssen wir diesen Graphen zuerst einmal als normalen Graphen vom Modell zeichnen lassen. Wenn bei \textbf{h}_\text{Start} Null und bei \textbf{v}_\text{y}\text{Start} 7900 eingeben wird, entsteht als Graph genau ein Kreis von der Größe der Erde, da v=\textbf{v}=7900m/s die 1.kosmische
Geschwindigkeit, die Kreisbahngeschwindigkeit an der Erdoberfläche ist. Mit ein paar Scan-Klicks kann man sich von der Richtigkeit überzeugen.

Durch einem Klick auf die Schaltfläche mit der blauen Diskette wird der Dialog *Save result as...* aufgerufen und diese aktuelle Bahn mit dem Zusatz „Erdkugel“ abgespeichert. Danach wechseln wir wieder in die ursprüngliche Aktivität und importieren über die Option *Import background graph ..* des Diagramm-Kontextmenüs diesen Graphen als Grafik in unser Diagramm, wobei wir ihn vor der Übernahme zuerst noch blau einfärben. Falls etwas schief gelaufen sein sollte, kann man die Aktion im Diagramm-Kontextmenü über *Delete background graphs / Imported* wieder rückgängig machen.

1) Mein eigenes Modellfenster:

2) Mein Diagramm „ISS-Bahn“ für eine Starhöhe von 350km und bei einer Höhe von ca. 450km im Apogeum:

Fragen:

(1) Mit welcher Startgeschwindigkeit wird diese Bahn realisiert?

(2) Wie groß ist die Geschwindigkeit im Apogeum?

(3) Warum ist die Geschwindigkeit im Apogeum kleiner als im Perigeum? Antworte (auch) mit einer Energieüberlegung dazu!

(4) Ermittle im Scan-Modus mit Hilfe der Tabellen jene Tabellenzeilennummer, bei der der einmalige Umlauf der ISS exakt abgeschlossen wird. Da das Step-Intervall dieses Modells dt = 1s ist, ist diese Zeilennummer gleichzeitig auch die Umlaufzeit in Sekunden. Wie groß ist die Umlaufzeit in Sekunden bzw. in Minuten und Sekunden?

(5) Lösche die übrigen Zeilen in der Tabelle *Table1* und lies danach aus der Tabellenstatistik folgende Werte heraus: *Max*, *Min* und *Average* von r, Höhe und v aus *Table1* und *Sum* von ds und *Max* von *Sum_S* aus *Table2*. Interpretiere *Sum* von ds und *Max* von *Sum_S*.

(6) Berechne die durchschnittliche Geschwindigkeit aus Bahnlänge und Umlaufzeit.

(7) Berechne die durchschnittliche Geschwindigkeit unter Verwendung des Mittelwertes vom Radius nach der Formel \(\bar{v} = \sqrt{\frac{G \cdot M_{\text{Earth}}}{\bar{r}}} \), wobei GC die universelle Gravitationskonstante und M_Earth die Erdmassen ist.
3.2.11 Das radioaktive Zerfallsgesetz

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Begriffe wie Halbwertszeit HWZ oder Halbwertshöhe sind prinzipiell bekannt. Der Zusammenhang zwischen der Halbwertszeit und der Zerfallskonstante wird zahlenmäßig einfach bekannt gegeben, wenn Themen wie Logarithmus und Lösung von Exponentialgleichungen im Fach Mathematik noch nicht behandelt worden sind.

Es gilt allgemein: \(\text{Zerfallskonstante} = \frac{\ln(2)}{\text{Halbwertszeit}} \approx \frac{0.693}{\text{Halbwertszeit}} \)

Aus diesem Zusammenhang sieht man schon, dass die Dimension der Zerfallskonstante der Kehrwert von jener der Zeit, d.h. 1/s ist.

In einem Diagramm soll die Abnahme der Anzahl eines Radionuklids dargestellt und nach dem Einpassen einer mathematischen Funktion formal beschrieben werden.

Weitere Tipps und Infos:

a) Zum Modell:

In einem neuen Modellfenster soll das abgebildete Modell erstellt werden:

Die unabhängige Variable ist die Zeit \(t \). Sie soll mit einer Schrittweite \(dt=0.1 \) von 0 bis 100 Sekunden laufen.

Die Bestandsgröße \(Nuc \) (Abkürzung für Anzahl der Radionuklide) hat einen Startwert von 100000 und verringert sich im Laufe der Zeit; deshalb hat Nuc einen Outflow. Der Outflow ist die Änderungsrate von Nuc und gibt an, wie stark sich die Bestandsgröße Nuc innerhalb der Zeiteinheit (allg. innerhalb der Einheit der unabhängigen Variablen) ändert. Diese Änderung pro Zeiteinheit hängt von der Zerfallskonstanten und von der aktuellen Anzahl der vorhandenen Radionuklide \(Nuc \) ab, sie ist exakt das Produkt dieser beiden Größen. Für Experten/innen der Differenzialrechnung einsichtig beschriften wir den Outflow mit \(dNuc_{nach_dt} \), da Coach die Schreibweise \(dNuc/dt \) als Variablenname nicht zulässt.

Der Wert der Konstanten \(HWZ \) sei 20 (Sekunden). Die Variable \(\text{Zerfallskonst} \) ist über 0.693/\(HWZ \) oder \(\ln(2)/HWZ \) definiert. Wählen für sie 4 Dezimalstellen bei ihrer Anzeige aus.

Bei dynamischen Systemen sind vor allem die Flussgrößen interessant. Deshalb nochmals etwas zum diesem Outflow und zum Prozentrechnen im Allgemeinen: Der Outflow ist die Änderungsrate von Nuc, die Änderung pro Zeiteinheit, die Änderung pro Sekunde. Möchte man aber die Änderung pro Sekunde in Prozent haben, muss die Änderung pro Sekunde durch den Grundwert (hier: Nuc) dividiert und danach mit
100 multipliziert werden; so erhält man den Wert der Variablen \textit{prozÄnderung_proSek}. Beim Berechnen von Prozenten oder Sprechen über Prozentsätze muss man immer genau wissen, welches der jeweilige Grundwert (= 100\%) ist.

\textbf{b) Zu den Diagrammen}

\textbf{Diagramm „Zerfallsgesetz, Zahl der Radionuklide“}

horizontale Achse: Variable \textit{t} mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variable \textit{Nuc} mit einer Skalierung von 0 bis 100000; \textit{rot}
zweite vertikale Achse: die Größe \textit{prozÄnderung_proSek} mit einer Skalierung von 0 bis 10; \textit{grün}

\textbf{Diagramm „Zerfallsgesetz, Aktivität“}

horizontale Achse: Variable \textit{t} mit einer Skalierung von 0 bis 100
erste vertikale Achse: die \textit{Aktivität}, welche nichts anderes als der Outflow der Variablen \textit{Nuc} ist; dazu wird der Diagrammspalte \textit{C2} \textit{unsichtbar} der Outflow \textit{dNuc_nach_dt} zugeordnet; in \textit{C3} wird dann die Aktivität in der Einheit Bq angezeigt; die „Connection“ von \textit{C3} zu \textit{C2} erfolgt über ‘Formula’ und den Namen der Spalte von \textit{C2} oder einfach durch die Eingabe von „C2“; Skalierung von 0 bis 10000; \textit{blau}

c)\textbf{Zur unabhängigen Tabelle „Table 1“}

Hier sollen neben dem Zeilenindex (Kontrollkästchen bei Show row index und Show column letters aktivieren) die Variablen \textit{t}, \textit{Nuc}, \textit{dNuc_nach_dt} und \textit{prozÄnderung_proSek} angezeigt werden.

\textbf{1) Mein eigenes Modellfenster :}

\textbf{2) Mein Diagramm „Zerfallsgesetz, Zahl der Radionuklide“ für die angegebenen Startwerte (100000 Radionuklide; HWZ: 10 s):}

\textbf{Fragen:}

(1) Gib die Radionuklidzahlen für \textit{t}_1 = \text{HWZ}, \textit{t}_2 = 2*\text{HWZ} und \textit{t}_3 = 3*\text{HWZ} an.

\textbf{Vervollständige:} Nach drei Halbwertszeiten ist die Anzahl der noch vorhandenen Radionuklide immer genau \(\Psi\Psi\) ein Achtel \(\Psi\) der Anfangszahl der Kerne.

(2) Bei einer konstanten prozentuellen zeitlichen Abnahme einer Größe beschreibt man diese mit einer Exponentialfunktion. Mit welcher Funktion würde man die Abnahme einer Größe beschreiben, die zeitlich konstant wäre (Achtung: es fehlt absichtlich das Wort „prozentuell“)?

(3) Betrachte die angezeigten Werte von \textit{Zerfallskonst} und \textit{proz_Änderung_proSek} im Modellfenster bei verschiedenen Halbwertszeiten. \textbf{Der Wert der Zerfallskonstante ist immer 100-Mal kleiner als die prozentuelle zeitliche Abnahme.}

\textbf{3) Mein „Function-fit“-Fenster} bei der Einpassung einer mathematischen Funktion in den vom Modell berechneten Graphen für \textit{Nuc}: (HWB = 10s, \textit{N}_0 = 100000):
Komplettiere die Gleichung: $N(t) = 100000^*$.

Der Parameter b ist die Zerfallskonstante. Vergleiche ihren Wert mit jenem, der im Modellfenster angezeigt wird, bzw. mit dem eigenen Berechnungsergebnis:

<table>
<thead>
<tr>
<th>HWZ (s)</th>
<th>b (1/s)</th>
<th>Zerfallskonst (1/s)</th>
<th>$\frac{\ln(2)}{HWZ}$</th>
</tr>
</thead>
</table>

4) Mein Simulations-Diagramm, das für die HWZen = 5, 10, 15, 20s den Einfluss der Halbwertszeit auf die Größe und den zeitlichen Verlauf der Aktivität verdeutlicht: Beschreibe mit eigenen Worten den Verlauf der dargestellten Graphen!

3.2.12 Das prozentuelle Wachstum

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Im selben Projekt, in dem das Zerfallsgesetz untersucht und visualisiert wird, könnte in einer zweiten Aktivität das konstante prozentuelle Wachstum behandelt werden. Die Analogie dieser beiden Prozesse wurde im Kapitel über das Zerfallsgesetz detailliert behandelt.

Mit einem Modell, bei dem das prozentuelle Wachstum pro Zeiteinheit eingegeben wird, soll graphisch die Abhängigkeit der Verdopplungszeit vom Prozentsatz verdeutlicht werden.

Weitere Tipps und Infos:

a) Zum Modell:

In einem neuen Modellfenster soll das abgebildete Modell erstellt werden:

Die unabhängige Variable t habe die Zeiteinheit ZE. Sie soll mit einer Schrittweite $dt=0.01$ von 0 bis 20 laufen. Die Bestandsgröße N kennzeichnet die Zahl einer beliebigen Größe, deren Anfangswert über die Konstante $Start_N$ eingestellt wird. Die Variable VD_Wert enthalte den verdoppelten Startwert. N soll anwachsen, deshalb bekommt diese Bestandsgröße einen Inflow. Der Inflow ist die Änderungsrate von N und gibt an, wie stark sich die Bestandsgröße N innerhalb der Zeiteinheit ändert.

Während sich der Wert des Inflows bei der Durchrechnung des Modells andauernd verändert, ist der Quotient aus Inflow und aktuellem Wert von N konstant; dies ist nämlich die Wachstumskonstante $WachstumKonst$. Die Verdoppelungszeit wird nach den Überlegungen im Projekt Zerfallsgesetz analog zur Halbwertszeit als Quotient aus $\ln(2)$ und der Wachstumskonstanten definiert.

Wenn man bei nicht allzu komplexen Formeln die beteiligten Größen kennt, helfen oft Dimensionsüberlegungen zur Findung des richtigen formalen Zusammenhangs. Dies soll hier verdeutlicht werden:

Die Verdoppelungszeit hat als Dimension ZE (Zeiteinheit), die Wachstumskonstante hat die Dimension $1/ZE$ und der natürliche Logarithmus von 2 ist eine Zahl, ist also dimensionslos. Aus Dimensionsgründen kann die Verdoppelungszeit nur durch einen Bruch festgelegt sein, bei dem die Wachstumskonstante im Nenner steht. Ein Produkt aus Wachstumskonstante und $\ln(2)$ ergäbe ebenfalls eine falsche Dimension für die Verdoppelungszeit.

b) Zum Diagramm „Prozentuelles Wachstum“

horizontale Achse: Variable t mit einer Skalierung von 0 bis 20
erste vertikale Achse: Variable N mit einer Skalierung von 50 bis 300; rot
zweite vertikale Achse: Variable VD_Wert mit einer Skalierung von 50 bis 300; grün

c) Zur unabhängigen Tabelle „Table 1“

Hier sollen neben dem Zeilenindex (Kontrollkästchen bei Show row index und Show column letters aktivieren) die Variablen t, N, 200 angezeigt werden.

1) Mein eigenes Modellfenster:

2) Mein Diagramm „Prozentuelles Wachstum“ für die angegebenen Startwerte ($N = 100$; 5%):

3) Mein Simulations-Diagramm für ein zeitlich konstantes Wachstum von 2, 4, 6, 8, 10 und 15 %. Lies daraus die Verdoppelungszeiten ab.

Meine Lösungen:

$VDZ(4%) = VDZ(6%) = VDZ(8%) = VDZ(10%) = VDZ(15%) =$

 Frage: Wie groß ist die Verdoppelungszeit bei einem 1%igen Wachstum? Sind es 50, 70 oder 111 Zeiteinheiten?
3.2.13 Die Radioaktive Zerfallskette

Arbeitsteam:

Kurzbeschreibung der Aufgabenstellung:

Im Bereich der Radioaktivität erfolgt die Umwandlung von Radionukliden in stabile Kerne oft über ganze Zerfallsketten.

Wie der radioaktive Zerfall über eine Zerfallskette prinzipiell ablaufen könnte und wie die Aktivität dabei in Abhängigkeit von den Halbwertszeiten abnimmt, soll in einem Modell untersucht werden, in dem sich eine bestimmte Anzahl radioaktiver Kerne über zwei instabile Zwischenkerne in eine einzige Sorte stabiler Atomkerne verwandelt.

Der Zusammenhang zwischen Halbwertszeit und Zerfallskonstante ist hier als bekannt vorausgesetzt.

Mit einem recht einfachen Coach-Modell kann man anschauliche Diagramme erzeugen, welche in einer Tabellenkalkulation nur sehr schwer und unter großem Zeitaufwand zu programmieren sind.

Im ersten Diagramm soll die zeitliche Änderung der Nuklidzahlen dargestellt werden, im zweiten die zeitliche Änderung der Aktivitäten der einzelnen Nuklide und die Summe dieser Aktivitäten.

Unter der Aktivität versteht man die Anzahl der Zerfälle pro Sekunde. Sie wird in Bq (Becquerel) angegeben. Da wir als Zeiteinheit 1 Sekunde verwenden, ist bei uns die Aktivität exakt der Zahlenwert des Outflows des jeweiligen Radionuklids. Verwendet man als Einheit der unabhängigen Modell-Variablen z.B. 1h, so wäre die Aktivität um den Faktor 3600 größer als der Zahlenwert des Flows.

Weitere Tipps und Infos:

a) Zum Modell:

Unten ist das Modell nach seiner Durchrechnung abgebildet. Startwert für N_{Nuc1} ist 100000. Alle anderen Nuklidzahlen haben als Anfangswert Null. Die unabhängige Modell-Variable ist die Zeit t. Sie soll mit einer Schrittweite $dt=0.1$ von 0 bis 100 Sekunden laufen. Setze als erstes die Symbole der vier Bestandsgrößen N_{Nuc1} bis N_{Nuc4} ins Modellfenster.
Die Bestandgröße \(N_{\text{Nuc1}} \) (Abkürzung für Anzahl des Radionuklids 1) hat einen \textbf{Outflow}, da die Anzahl dieser Kerne durch Kernumwandlungen abnehmen wird. Der Outflow ist die Änderungsrate von \(N_{\text{Nuc1}} \) und gibt an, wie stark sich die Bestandsgröße \(N_{\text{Nuc1}} \) innerhalb der Zeiteinheit ändert. Diese Änderung pro Zeiteinheit hängt von der \textbf{Zerfallskonst1} und von der aktuellen Anzahl der vorhandenen Radionuklide \(N_{\text{Nuc1}} \) ab, sie ist exakt das Produkt dieser beiden Größen. Weil die Zeiteinheit 1 Sekunde ist und die physikalische Größe \textbf{Aktivität} als die Zahl der Zerfälle pro Sekunde definiert ist, stellt dieser Outflow gleichzeitig die Aktivität \(A_1 \) dar. Damit die Beschreibung und die Zahlenwerte eines Flows im Modellfenster angezeigt werden, sind in seinem Eigenschaftenfenster zwei Häckchen nötig, oben bei ‚Show Label‘ und unten neben der Einstellung der Dezimalstellen bei ‚Show Digital Display‘.

Der Wert der Konstanten \(HWZ_1 \) sei 15. Die Variable \textbf{Zerfallskonst1} ist über \(0.693/HWZ_1 \) oder \(\text{Ln(2)}/HWZ_1 \) definiert.

Für die zwei radioaktiven Tochterkerne gilt analoges.

Die Verkettung der Bestandsgrößen kann ganz einfach gemacht werden. Der Outflow \(A_1 \) der Bestandsgröße \(N_{\text{Nuc1}} \) ist gleichzeitig der Inflow der Bestandsgröße \(N_{\text{Nuc2}} \); entsprechendes gilt für die Flows zwischen den anderen Bestandsgrößen. Der Zahlenwert von \(N_{\text{Nuc2}} \) wird so vom Inflow \(A_1 \) und vom Outflow \(A_2 \) bestimmt.

\textbf{b) Zu den Diagrammen}

\textbf{Diagramm} „Zahl der Kerne einer Zerfallskette“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variablen \(N_{\text{Nuc1}}, N_{\text{Nuc2}}, N_{\text{Nuc3}} \), mit einer Skalierung von 0 bis 100000 jeweils in den gleichen Farben wie im Modellfenster
zweite vertikale Achse: die Variable \(N_{\text{Nuc4}} \) \textit{schwarz} und \(N_{\text{gesamt}} \) \textit{rot} in derselben Skalierung von 0 bis 100000. \(N_{\text{gesamt}} \) soll die Summe der aktuell vorhandenen radioaktiven Kerne anzeigen.

\textbf{Diagramm} „Aktivitäten in einer Zerfallskette“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 100
erste vertikale Achse: Variablen \(A_1, A_2 \) und \(A_3 \) mit einer Skalierung von 0 bis 5000 in den gleichen Farben wie im Modellfenster
zweite vertikale Achse: die Variable \(A_{\text{gesamt}} \) in einer Skalierung von 0 bis 10000; \textit{rot}. \(A_{\text{gesamt}} \) soll die Summe der aktuell vorhandenen Aktivitäten anzeigen.

\textbf{c) Zur Tabelle} „Table 1“

Es sollen neben dem Zeilenindex (Kontrollkästchen bei ‚Show row index‘ und ‚Show column letters‘ aktivieren) die Variablen \(t, N_{\text{Nuc1}}, A_1, A_2, A_3 \) und \(N_{\text{Nuc4}} \) angezeigt werden.

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Proto-
Wenn das Modellfenster ‚undocked’ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Nuklidzahlen“ für die angegebenen Startwerte (100000 Radioukliide; HWZen: 15, 5 und 10 s):

Fragen:

(1) Warum kann man für das Nuklid1 die HWZ aus dem Diagramm herauslesen, für das Nuklid2 oder Nuklid3 aber nicht?

(2) Was kann über die Graphen der Variablen N_gesamt und N_Nuc4 gesagt werden?

Vervollständige: Wenn der Graph des Nuklids2 einen Hochpunkt hat, ist die Zerfallsrate von Nuklid1 genau gleich groß Ψ wie die Zerfallsrate von Nuklid2 Ψ.

3) Mein Diagramm „Aktivitäten“ für die angegebenen Startwerte (100000 Radionuklide; HWZen: 15, 5 und 10 s):

Fragen:

(1) Wann erreicht die Gesamtaktivität der Zerfallskette ihren Maximalwert?

(2) Ermittle durch gezielles Probieren HWZen, bei denen die Gesamtaktivität ein Randmaximum bei t = 0 Sekunden hat.

Meine Lösung: HWZ1 = HWZ2 = HWZ3 =

Vervollständige: Anzahl und HWZ eines Radionuklids bestimmen die Größe der Aktivität. Die Aktivität einer bestimmten Anzahl desselben Radionuklids ist umso größer, je kleiner seine HWZ ist. Ψ

3.2.14 Kaffee kühlt ab

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Eine Tasse heißer Kaffee kühlt ab, indem nach allen Richtungen Wärmeenergie abgestrahlt wird. Die Tasse steht also nicht auf dem Tisch, sondern wird von einer Halterung mit einem Stativ getragen. Diese Bemerkung wird dann interessant, wenn wir versuchen, die Parameter unseres Modells mit Hilfe einer Messung zu optimieren oder an eine spezielle Kaffeetasse (Form, Material) anzupassen.

Eine sog. spezifische Abstrahlungsleistung ist die entscheidende Größe und hat die Dimension $J/(s*K*kg)$. Sie gibt also an, wie viel Energie pro Sekunde abgestrahlt wird, wenn die Temperaturdifferenz zur Umgebung 1 K und die Kaffeemenge 1 kg ist.

Mache ein Modell und ein Diagramm, um diesen Abkühlungsvorgang genauer untersuchen zu können.

Weitere Tipps und Infos:

a) Zum Modell:

Die unabhängige Variable des Modells ist die Zeit \(t \). Mit
einer Schrittweite \(dt = 1 \) soll \(t \) von 0 bis 3600 laufen.

Folgende Konstanten spielen hier eine Rolle:
die Kaffeemasse \(m \), die spezifische Wärmekapazität des Wassers \(Cp_{\text{Wasser}} \), die Umgebungstemperatur \(Temp_{\text{Umgebung}} \), die Starttemperatur des Kaffees \(Temp_{\text{Kaffee Start}} \) und die spezifische Abstrahlungsleistung \(spez\text{AbstrahlLeist} \).

Wie man daraus \(P \), die abgestrahlte Energie pro Sekunde, berechnet, verraten die Dimensionen dieser Größen: Aus \(J/(s*K*kg) \) wird \(J/s \), wenn man die erste Größe mit der Masse und mit einer Temperatur multipliziert; diese Temperatur ist die Temperaturdifferenz zwischen Kaffee und Umgebung, wie einem das physikalische Gespür oder der physikalische Sachverstand sagt. Die Bestandsgröße \(Temp_{\text{Kaffee}} \) hat einen Outflow, da sie ja im Laufe der Zeit abnehmen soll. Ein Flow ist, wenn die Zeit wie hier unabhängige Variable ist, eine Änderung pro Sekunde, hier ist er eine Temperaturänderung pro Sekunde; diese erhält man, wenn man \(P \) durch das Produkt aus Masse und spez. Wärmekapazität dividiert.

Bei der Lösung dieser Aufgabe im Textmodus ist man fast näher an den bekannten Formeln der Physik. Als erstes wird die Energie berechnet, die im Zeitintervall \(dt \) abgestrahlt wird. Daraus entsteht durch Umformen der Formel \(dQ = \frac{Cp*m*dT}{j/(s*K*Kg)} \) jene Temperaturänderung des Kaffees, um die er pro Zeitintervall \(dt \) kälter wird.

b) Zum Diagramm „Kaffee kühlt ab“

horizontale Achse: Variable \(t \) mit einer Skalierung von 0 bis 1200 (=20 min)

erste vertikale Achse: Variable \(Temp_{\text{Kaffee}} \) mit einer Skalierung von 0 bis 90; rot

zweite vertikale Achse: Variable \(Temp_{\text{Umgebung}} \) mit derselben Skalierung wie auf der ersten Achse; grün

1) Mein eigenes Modellfenster:

Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseite. Wenn das Modellfenster ‚undocked‘ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm für die angegebenen Startwerte (80°C, 0.25kg, 15J/(s*Kg*K)):

Fragen:

(1) Warum ist die Temperaturabnahme am Anfang viel größer als gegen Ende der Temperaturänderung? Welche Größe(n) – abgesehen von der spezAbstrahlLeist – bestimmen diese?

(2) Wie groß ist die Halbwertszeit der Temperaturabnahme?

(3) Welche Temperatur wird der Kaffee nach genügend langer Zeit sicher haben?
3) **Bestimme mit 'Function-fit' die Funktionsgleichung** für die Abnahme der Temperatur und gib die Gleichung für \(\text{Temp}_\text{Kaffee}(t) \) an.

Lösung: \(\text{Temp}_\text{Kaffee}(t) = \)

4) **Ermittle mit ähnlichen Startbedingungen in einem Coach6-Messeexperiment** einen Graphen und passe dein Modell (die Startbedingungen) so an, dass es das Experiment möglichst gut simuliert.

5) **Zeige, dass die Steigung des Temperaturabnahmegraphen** vom Temperaturunterschied zur Umgebung (\(T_\text{Umgebung} = 20°C \)) abhängt und gehe wie folgt vor:

| Notiere den mit 'Function-fit' bestimmten Wert der Temperaturabnahmekonstanten \(b \) (siehe auch oben) \(b = \)

Bestimme mit 'Analyse/Slope' „händisch“ die Steigung des Graphen bei den Kaffee-temperaturen 30°C und 60°C und trage diese in die Tabelle ein:

<table>
<thead>
<tr>
<th>Temp_Kaffee [°C]</th>
<th>Delta_Temp [°C]</th>
<th>Slope [°C/s]</th>
<th>b*Delta_Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Tabelle zeigt, dass die Steigung \(\text{Slope} \) gleich dem Produkt aus dem Parameter \(b \) und Temperaturdifferenz \(\text{Delta}_\text{Temp} \) ist und nicht gleich jenem Produkt aus \(b \) und Kaffeetemperatur \(\text{Temp}_\text{Kaffee} \). Eine Ungenauigkeit liegt hier in der Ermittlung der Steigung über die 'Analyse/Slope'-Option des Diagramm-Kontextmenüs, da die Tangente dort „mit freiem Auge“ an den Graphen angelegt wird.

3.2.15 **Die Entladung eines Kondensators**

Arbeitsteam:

Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Ein geladener Kondensator entlädt sich über einen ohmschen Widerstand. Untersuche mit Hilfe eines Modells und eines Diagramms diesen Vorgang.

Weitere Infos und Tipps:

a) **Zum Modell:**

Die unabhängige Variable des Modells ist die Zeit \(t \). Mit einer Schrittweite \(dt = 0.001 \) soll \(t \) von 0 bis 1 laufen.

Die Zahlenwerte folgender Konstanten sind im unten abgebildeten Modell ersichtlich:

- Die Spannung \(\text{U}_\text{Start} \) in Volt vor Beginn der Entladung, der Widerstand \(R \) in Ohm und die Kapazität \(C \) in Farad.

- Die Variable \(\text{U}_C \) enthält die aktuelle Spannung am Kondensator, die auf Grund der elektrischen Ladungen im Kondensator herrscht.

- Die Ladung \(Q \) ist die Bestandsgröße dieses Modells und hat einen Outflow, damit die Ladung im Laufe der Zeit
durch einen Ladungsausgleich sinkt. Dieser Outflow, die Ladungsänderung pro Sekunde, ist nichts anderes als der Entladestrom I.

Damit die einzelnen Symbole des Modells auch formal richtig verknüpft werden können, müssen ein paar Formeln der Elektrizitätslehre richtig angewendet werden:

\[I = \frac{dQ}{dt}; \quad Q = C \cdot U; \quad U = R \cdot I. \]

Im Textmodus würde das Modell etwa so wie hier abgebildet aussehen.

b) Zum Diagramm „Entladung eines Kondensators“

horizontale Achse: Variable t mit einer Skalierung von 0 bis 1 erste vertikale Achse: Variable \(U_C \) mit einer Skalierung von 0 bis 120; grün zweite vertikale Achse: Variable \(I \) mit einer Skalierung von 0 bis 0.120; rot

Bei größeren Änderungen des ohmschen Widerstandes muss eventuell die Skalierung für die Anzeige des Entladestromes angepasst werden.

1) Mein eigenes Modellfenster:

2) Mein Diagramm für die angegebenen Startwerte (R=2000Ohm; C=100E-6F; U=100 V):

Fragen:

(1) Warum ist der Entladestrom I am Anfang viel größer als gegen Ende des Entladevorganges?

(2) Wie groß ist die Halbwertszeit des Spannungsabfalls für die Startwerte? Berechne daraus die Abnahmekonstante (Verallgemeinerung des Begriffs Zerfallskonstante) und vergleiche diesen Wert mit dem Zahlenwert von R*C.

(3) Die allgemeine Gleichung für die Spannung heißt: \(U(t) = U_0 \cdot \exp[-t/(R*C)] \)

Vervollständige: Da das Argument der Exponentialfunktion immer dimensionslos ist bzw. sein muss, muss das Produkt R*C die Dimension \(\Psi \) Zeit/Sekunde \(\Psi \) haben.

3) Bestimme mit „Function-fit“ die Funktionsgleichungen für die Abnahme der Spannung und für den Entladestrom. Gib die Gleichungen für \(U(t) \) und \(I(t) \) an.

Lösung: \(U(t) = \) \(I(t) = \)

Vervollständige: Es fällt auf, dass die Abnahmekonstanten in den Exponentialfunktionen in beiden Fällen \(\Psi \) exakt gleich groß sind \(\Psi \).
3.2.16 Das Aufladen eines Kondensators

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:

Weitere Tipps und Infos:

a) Zum Modell:
Die unabhängige Variable des Modells ist die Zeit t. Mit einer Schrittweite $dt = 0.001$ soll t von 0 bis 1 laufen.
Die Zahlenwerte folgender Konstanten sind im abgebildeten Modell ersichtlich:
Die angelegte Spannung U in Volt, der Widerstand R in Ohm, die Kapazität C in Farad, und die Ladung Q_{Start} des Kondensators am Beginn des Ladevorganges.

Die Variable U_C enthält die aktuelle Spannung am Kondensator, die sich auf Grund der elektrischen Ladungen im Kondensator als Gegenspannung zur von außen angelegten Spannung U aufbaut.

Die Ladung Q ist die Bestandsgröße dieses Modells und hat einen Inflow, damit die Ladung im Laufe der Zeit ansteigt. Der Inflow, die Ladungsänderung pro Sekunde, ist nichts anderes als der Ladestrom I.

Damit die einzelnen Symbole des Modells auch formal richtig verknüpft werden können, müssen ein paar Formeln der Elektrizitätslehre richtig angewendet werden:
$I = \frac{dQ}{dt}; Q = C * U; U = R * I$.

b) Zum Diagramm „Aufladen eines Kondensators“
horizontale Achse: Variable t mit einer Skalierung von 0 bis 1
erste vertikale Achse: Variable U_C (grün) und Konstante U (blau) mit einer Skalierung von 0 bis 120
zweite vertikale Achse: Variable I mit einer Skalierung von 0 bis 0.120; rot
1) Mein eigenes Modellfenster:
Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseite. Wenn das Modellfenster ‚undocked‘ ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm für die angegebenen Startwerte:
Frage: Warum ist der Ladestrom \(I \) am Anfang viel größer als gegen Ende des Ladeprozesses?

3) Bestimme mit ‚Function-fit‘ die Funktionsgleichung für den Ladestrom und übertrage das ‚Function-fit‘-Fenster hier her. Gib auch die Gleichung für \(I(t) \) an.

4) Verwende den Parameter \(b \) vom Einpassvorgang der Exponentialfunktion in den Graphen des Ladestromes und formuliere damit die Funktionsgleichung für die ansteigende Spannung am Kondensator.

Antwort: \(b = \ldots \) \(U(t) = \ldots \)

3.2.17 Der Astronaut altert langsamer, wenn …

Arbeitsteam: Ort und Datum der Durchführung:

Kurzbeschreibung der Aufgabenstellung:
Ein Astronaut fährt mit einer Rakete für den auf der Erde zurück bleibenden Zwilling 20 Jahre lang durch den Weltraum zu einem extrasolaren Planeten und wieder zurück. Die Rakete ist immer mit einer konstanten Geschwindigkeit \(v \) (bezogen auf die Erde) unterwegs, wobei die kurzen nötigen Beschleunigungsphasen vernachlässigt werden sollen.

Nach der speziellen Relativitätstheorie läuft die Uhr im Raumschiff langsamer; während auf der Erde 1 Stunde vergeht, sind es in der Rakete nur \(\sqrt{1 - \frac{v^2}{c^2}} \) Stunden, wobei diese Verlangsamung der Uhr/Zeit in der Rakete entscheidend von der Raketenbeschwindigkeit \(v \) abhängt.

Mache ein Modell und stelle in einem Diagramm die Alterung des Astronauten (y-Achse) gegenüber der Alterung des Zwilling auf der Erde (x-Achse) dar. Der Prozentsatz, der die Fahrgeschwindigkeit \(v \) mit der Lichtgeschwindigkeit \(c \) vergleicht, soll frei wählbar sein.

Weitere Tipps und Infos:
a) Zum Modell:
Die unabhängige Variable des Modells ist die Zeit \(t \) in Sekunden. Mit einer Schrittweite \(dt = 1E5 \) soll \(t \) von 0 bis 7E8 laufen. 1E5s sind etwa 28 Stunden.

Die Zahlwerte folgender Konstanten sind im abgebildeten Modell ersichtlich: Der Prozentsatz \(p_{von\,C} \), über den die Fahrgeschwindigkeit \(v \) der Rakete eingestellt wird; die Lichtgeschwindigkeit \(C \), deren Zahlwert aus der Liste der angebotenen Konstanten stammt; die Konstante Jahr1, welche die Anzahl der Sekunden pro Jahr angibt. Die Variable Jahr20 enthält die Sekundenanzahl von 20 Jahren. Die Variable Faktor enthält jene Zahl kleiner als 1, die mit der Erdenzeit multipliziert werden muss, um die Raketenzeit zu erhalten.

Das Modell kann auch im Textmodus erstellt werden.

Für den Abbruch der Durchrechnung nach 20 Jahren (t20 J) ist eine Befehlszeile im linken Teil des Modellfensters nötig.

b) Zum Diagramm „Alterungsverhältnis der Zwillinge“

horizontale Achse: Variable **Alterung_auf_Erde_x** mit einer Skalierung von 0 bis 25

c) Zur Tabelle „Table 1“
Sie soll die Variablen t, **Alterung_auf_Erde_x**, **AlterungAstronaut_y** enthalten.

1) Mein eigenes Modellfenster:

2) Das Simulations-Diagramm für Raketengeschwindigkeiten, welche gleich 0, 50, 75, 90 und 95 % der Lichtgeschwindigkeit sind:
Frage: Wie viele Jahre ist der Astronaut bei einer Geschwindigkeit von 95% von c gealtert? Antwort: bei
3) Mit wie viel % der Lichtgeschwindigkeit muss die Rakete düsen, damit der Astronaut halb so schnell altert wie sein Zwilling auf der Erde? Gezieltes Probieren ist angesagt. Es kann auch jenes Diagramm übertragen werden, aus dem die Antwort herausgelesen worden ist.
3.3 Einige Protokolle

Da in Kapitel 2 die Aufgaben sehr detailliert behandelt sind, werden hier nur ein paar wenige Protokolle angeführt.

Für ordentliche Protokolle ist es wichtig, dass man das Formatieren der Grafiken, welche über die Zwischenablage aus dem Coach6-Programm übernommen werden, perfekt beherrscht !!

3.3.1 Protokoll zu:
Minimale Oberfläche eines quadratischen Quaders bei fixem Volumen

Arbeitsteam: Anni und Franz

Ort und Datum der Durchführung: Informatikraum 1, 1. Juni 2005

Kurzbeschreibung der Aufgabenstellung:

Einen quadratischen Quader mit fix vorgegebenem Volumen (z.B. 500 m³; Volumen eines Hauses) kann man mit unterschiedlichen Grundkanten und Höhen gestalten, wobei sich die Oberfläche dadurch verändert. Am meisten interessiert hier jener Quader, welcher die kleinste Oberfläche hat. Diese zunächst theoretische Fragestellung ist auch etwa im Wohnungsbau interessant, da die Energieverluste durch Transmission bei Gebäuden über ihre Gebäudehüllfläche = Oberfläche erfolgen.

Mache ein Modell, welches unter Berücksichtigung des konstanten Volumens bei Variation des Verhältnisfaktors $f_{h_zu_a}$ zwischen Höhe und Grundkante die Größen der Oberfläche dadurch berechnet und stelle schließlich die Oberfläche als Funktion dieses Verhältnisfaktors $f_{h_zu_a}$ dar. Dieser Verhältnisfaktor muss also als unabhängige Variable verwendet werden.

Weitere Tipps und Infos:

a) Zum Modell
Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die unabhängige Variable $f_{h_zu_a}$ soll die Werte von 0.1 bis 2 durchlaufen, eine brauchbare Schrittweite ist 0.01. Null darf dieser Faktor aber wegen der Berechnung von a (siehe unten) nie sein.

Zu den Berechnungsformeln: $V=a^2*h$, $f=h/a$, $h=a*f$, d.h.: $V=a^2*f*a=f*a^3$; $a=(V/f)^{(1/3)}$. Die Quaderoberfläche ist gleich der doppelten Grundfläche G vermehrt um die Mantelfläche $M (=4*a*h)$.

b) Zum Diagramm „Quadrat. Quader mit minimaler Oberfläche“

horizontale Achse: unabhängige Variable $f_{h_zu_a}$ mit Skalierung von 0 bis 2
erste vertikale Achse: Variable Oberfl mit der Skalierung von 200 bis 800; rot
c) Zur unabhängigen Tabelle „Table 1“
Diese soll den Zeilenindex (Kontrollkästchen 'show row index' aktivieren) anzeigen und die Variablen \(f_{h_zu_a} \), \(\text{Oberfl} \), \(a \) und \(h \) enthalten. Bei der Variablen \(\text{Oberfl} \) soll die Zahl der Dezimalstellen auf 3 oder 4 erhöht werden, damit man das Minimum besser feststellen kann.
Falls man in die Diagrammtabelle zusätzliche Spalten einfügen wollte, hat man das Problem, dass dann deren Werte auch als Graphen im Diagramm sichtbar werden; stellt man diese zusätzlichen Spalten auf 'invisible', so werden diese auch in der Diagrammtabelle nicht mehr angezeigt.

1) Mein eigenes Modellfenster:
Am Schluss der Bearbeitung bitte hier die letzte Version herkopieren. Das erste funktionierende Modellfenster dient nur als „Platzhalter“ zur Formatierung dieser Protokollseiten. Wenn das Modellfenster 'undocked' ist, also nicht an ein Bildschirm-Viertel gebunden ist, kann es mit [Alt]+[Druck] über den Zwischenspeicher kopiert werden.

2) Mein Diagramm „Quadrat. Quader mit minimaler Oberfläche“

![Diagramm „Quadrat. Quader mit minimaler Oberfläche“](image)
Frage:
Ermittle im \textit{Scan}*-Modus (Diagramm-Kontextmenü) jenen Faktor zwischen Höhe und Grundkante, bei dem die Oberfläche minimal ist, und interpretiere die Zahlenwerte. Gib die Kantenlängen und die Formel zur Berechnung der minimalen Oberfläche an.

\[f_{h \to a}: 1 \quad a = a \quad b = a \quad h = a \cdot f_{h \to a} = a^2 \quad O_{\text{min}} = 6 \cdot a^2 \]

\textit{Vervollständige:} Unter allen quadratischen Quaders mit vorgegebenem Volumen ist \textit{der Würfel jener} mit minimaler Oberfläche.

3.3.2 Protokoll zu:
\textbf{Stammfunktion der Sinusfunktion}

\textbf{Arbeitsteam:} Judith und Michael

\textbf{Ort und Datum der Durchführung:} Physiksaal 1; 1.Juli 2005

\textbf{Kurzbeschreibung der Aufgabenstellung:}

F(x) ist eine Stammfunktion einer Funktion f(x), wenn die Ableitung von F(x) wieder gleich f(x) ist, kurz wenn gilt: F'(x) = f(x). Das Suchen einer Stammfunktion nennt man Integrieren. Neben anderen Methoden kann eine Stammfunktion auch durch „numerisches Integrieren“ ermittelt werden. Dabei erhält man F(x₀), den Funktionswert einer Stammfunktion an der Stelle x₀, als Summe aller Flächenstücke, die zwischen dem Graphen von f(x) und der x-Achse bis zu dieser Stelle x₀ liegen.

Da eine Stammfunktion nur bis auf eine additive Konstante bestimmt ist, ist auch jede Stelle, ab der die Flächenstücke aufsummiert werden, nicht relevant. Man könnte auch sagen, dass der Anfangswert beim Aufsummieren nicht zwingend Null sein muss.

Mache ein Modell, mit dem man den Graphen der \textit{Sinusfunktion} im Intervall \([0;10]\) zeichnen kann. Zusätzlich sollen die Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse beginnend bei x=0 schrittweise aufsummiert werden. Die aktuelle Zwischensumme dieser Flächenstreifen ist der Funktionswert der Stammfunktion, welche ebenfalls im Diagramm dargestellt werden soll.

Mit Hilfe der Analysemöglichkeiten von Coach6 soll auch allgemein der Term für die gefundene Stammfunktion ermittelt werden.

\textbf{Weitere Tipps und Infos:}

\textbf{a) Zum Modell}

Öffne in einer neuen Aktivität das Modellfenster, arbeite im Grafikmodus und erstelle das abgebildete Modell: Die \textit{unabhängige Variable} \(x\) soll die Werte von 0 bis 10 durchlaufen, eine brauchbare \textit{Schrittweite} ist 0.01. Damit das Variablensymbol für \(x\) auch angezeigt wird, muss in seinem Eigenschaftenfenster unten „Symbol visible..“ aktiviert sein. Die Modellvariable \textit{Sinus_f_x} wird mit Hilfe der Mathematischen Funktion \(\sin(x)\) im Formeleditor definiert. Wir verändern die Standardeinstellung Radiant für das Argument der Winkelfunktion nicht.

In der Bestandsvariablen (state variable) \textit{Sum} werden die senkrechten Flächenstreifen zwischen dem Graphen der Sinusfunktion und der x-Achse aufsummiert. Den An-
fangswert von \textit{Sum} setzen wir dabei Null, was aber nicht zwangsläufig so sein muss. Flächenstreifen liefern negative Beiträge zur Summe, wenn der Funktionswert von \textit{Sin}(x) dort negativ ist. Der \textit{Flow}, welcher in die Bestandsgröße hineinzeigt, sorgt dafür, dass die Beiträge, welche durch die einzelnen Streifen entstehen, jeweils zum aktuellen Bestand von \textit{Sum} dazugezählt werden. Der aktuelle Wert von \textit{Sum} wird hier nicht der Funktionswert der Stammfunktion sein; deshalb müssen wir eigene Variable \textit{StammF}_x einsetzen. \textbf{Auf die Definition dieser Variablen verzichten wir aber vorerst.} Deshalb wird im Innern des Variablensymbols ein \textit{Fragezeichen} angezeigt.

Zeichne zuerst alle Symbole und Verbindungsfpfeile und trage erst danach die Formeln zur Definition der Größen ein. Wenn der Connector von \textit{Sinus}_f_x zum \textit{Inflow} von \textit{Sum} gezeichnet ist, ist dort schon alles erledigt. Es handelt sich bei einem \textit{Flow} um eine Änderungsrate, die immer auf die Einheit der unabhängigen Variablen bezogen ist; die Änderungsrate ist \textit{Sinus}_f_x, die Änderung pro Durchrechnungsschritt ist \textit{Sinus}_f_x*dx, das die Fläche des Streifens zwischen \textit{Sinus}_f_x und x-Achse ist.

\textbf{b) Zum Diagramm „Sin(x) und Stammfunktion“}

horizontale Achse: unabhängige Variable \textit{x} mit Skalierung von 0 bis 10

\textbf{c) Zur unabhängigen Tabelle „Table 1“}

Auf die Anzeige von \textit{StammF}_x müssen wir vorläufig auch hier verzichten.

Die Spalte C3 mit der Bezeichnung (Quantity) \textit{Streifenfl} wird über eine Formel definiert (bei ‚Connection‘, ‚Formula‘ auswählen); die im Formeleditor einzugebende Formel heißt \textit{Flow}_1*0.01, wenn die Breite der Flächenstreifen wie oben empfohlen wirklich 0.01 ist. Bei den ersten zwei Spalten erhöhen wir die Anzahl der Dezimalstellen auf 4, bei allen weiteren auf 6.

\textbf{1) Mein eigenes Modellfenster:}

\begin{center}
\begin{tikzpicture}
\node (Input) [draw] {\textbf{Die Sinusfunktion und ihre Stammfunktion}};
\node (Sinus_f_x) [right of=Input] {Sinus_f_x};;
\node (x) [below of=Sinus_f_x] {x\,(0)};
\node (Sum) [below of=Sinus_f_x] {\textit{Sum}};
\node (StammF_x) [below of=Input] {? \textit{StammF}_x};
\draw (Input) -- (Sinus_f_x);
\draw (Sinus_f_x) -- (x);
\draw (x) -- (StammF_x);
\draw (StammF_x) -- (Sum);
\node (variable) at (x) [below] \textit{x ist unabhängige Variable};
\end{tikzpicture}
\end{center}

\begin{center}
Im Innern des Symbols der Variablen \textit{StammF}_x wird vorerst ein \textit{Fragezeichen} angezeigt.
\end{center}

\begin{center}
\textbf{Dieses Fragezeichen zeigt an, dass diese Variable im Moment der Aufnahme noch nicht definiert ist!}
\end{center}
2) Mein Diagramm „Sin(x) und Stammfunktion“: ohne den Graphen von StammF_x:

Das Diagramm zeigt einen Graphen der Variablen Sum, dessen Funktionswerte zwar schwanken wie eine Sinus- oder Cosinusfunktion, dessen Wertebereich [0;2] aber noch nicht passt.

Frage:
Wir erinnern uns daran, dass eine Stammfunktion immer nur bis auf eine additive Konstante definiert ist. Welchen Konstantewert müssen wir zu den Funktionswerten von Sum addieren, damit der Graph um 1 Einheit in der y-Richtung nach unten verschoben wird und der Wertebereich [-1;+1] wird?
Remember: Schieberegeln bei Funktionsgraphen!

Antwort: Man muss zu Sum die Konstante (-1) addieren !!

3) Mein Diagramm „Sin(x) und Stammfunktion“: mit dem Graphen von StammF_x:

Definiere dazu zuerst im Modell die Variable StammF_x, indem du dort die Formel Sum + (-1) oder kürzer Sum – 1 eingibst. Vervollständige danach die Anzeige von StammF_x im Diagramm und in der Tabelle. Dann rechne das Modell neu durch und übertrage das Diagramm hier her.

Fragen:
(1) Funktionen-Experten/innen wissen, dass man einen Graphen an der x-Achse spiegelt, wenn man ein Minus vor den ganzen Funktionsterm setzt. Welchen Funktionsgraphen sieht man, wenn man die rot gezeichnete Stammfunktion an der x-Achse spiegelt?

Antwort: Eine Cosinusfunktion !!

(2) Die Stammfunktion ist also eine an der x-Achse gespiegelte Cosinusfunktion. Wie heißt deshalb die Funktionsgleichung von StammF_x ?

Antwort: StammF_x = - Cos(x)

(3) Coach6 kann als Winkelfunktionen nur Sinusfunktionen „identifizieren“. Im „Function-fit“-Fenster wird die Stammfunktion mit einem einzigen Klick auf [Auto fit] wie folgt eingepasst: StammF_x = 1*Sin(1*x-1.57)+8.3E-008 = Sin(x-π/2).
Wenn man berücksichtigt, dass die Sinusfunktion eine ungerade Funktion ist, und wenn man sich bei den Winkelfunktionen am Einheitskreis auskennt, kann man leicht zeigen, dass gilt:
\[\text{StammF}_x = \sin(x-\pi/2) = -\cos(x). \]
Zeige, dass das richtig ist.

Also:
\[\text{StammF}_x = \sin(x-\pi/2) = -\sin(\pi/2-x) = -\sin(90-\alpha) = -\cos(\alpha) = -\cos(x) \]

Vervollständige:
\[f(x) = \cos(x) \Rightarrow F(x) = \sin(x) + c; \quad f(x) = \sin(x) \Rightarrow F(x) = -\cos(x) + c \]

3.3.3 Protokoll zu: Das horizontale Federpendel

Arbeitsteam: Carmen und Petra

Datum und Ort der Durchführung: Physiksaal 1, 1. Juli 2005

Kurzbeschreibung der Aufgabenstellung:

Eine Masse, z.B. eine kleine Kugel, ist zwischen zwei gleichartige Federn „eingespannt“. Die Masse wird in eine Richtung horizontal ausgelenkt und schwingt dann hin und her.

Die Kugel „fliegt“ bzw. gleitet reibungsfrei hin und her; zuerst sehen wir von der inneren Reibung in den Federn ab, dann aber setzen wir eine zur Geschwindigkeit proportionale Reibungskraft an.

Die beiden Federn sind völlig gleich; \(k_1 = k_2 \) und \(k_1 + k_2 = k \). Die sich einstellende Schwingung soll im Diagramm untersucht werden, wobei wir uns im speziellen für die Periodendauer und die Frequenz
interessieren. Auch in den Graphen der gedämpften Schwingung soll eine mathematische Funktion eingepasst und deren Parameter ausgewertet werden.

Weitere Tipps und Infos:

a) Zum Modell:

Beim Einrichten der Aktivität lassen wir die Standard-Einstellung für das Winkelmaß unverändert, da man damit Schwingungen besser bearbeiten kann.

In einem neuen Modelfenster soll das hier abgebildete Modell erstellt werden:

Unabhängige Variable des Modells ist auch hier die Zeit t. Sie soll mit einer Schrittweite $dt=0.01$ von 0 bis 15 laufen. Wenn wir diese Festlegungen im Dialog der Modelleinstellungen (Model Settings) treffen, wählen wir als Berechnungsmethode diesmal bewusst RK2 (Runge Kutta Verfahren, bei dem die Intervallschritte halbiert werden) aus. Das aktivierte Berechnungsverfahren wird im Modelfenster links unten auch angezeigt.

Wie bei jeder Bewegung bedarf es einer Beschleunigung a, welche für eine Veränderung der Geschwindigkeit v sorgt, die ihrerseits für einen Weg, hier für eine Auslenkung Δx, verantwortlich ist. Die Beschleunigung a wird unter Anwendung des zweiten Newton'schen Axioms mit der Federkraft und der Masse m definiert. Die Federkraft muss mit einem minus definiert werden (Federkraft: $-k\Delta x$), da die Kraft immer entgegengesetzt zur Auslenkung wirkt. Startwert von v ist Null, Startwert von Δx sei 0.3 (wir haben lauter SI-Einheiten in Verwendung), da die schwingende Masse zu Beginn ja ausgelenkt sein muss, wenn sich eine Schwingung einstellen soll. Passende Werte der Konstanten: $m = 0.1$ kg; $k = 0.2$ N/m. Die Zahl der Dezimalstellen sollte bei allen Variablen-Symbolen des Modells auf mindestens 3 gestellt werden.

Wenn man nach Fertigstellung des Modells einfach eine Durchrechnung startet, sieht man an den angezeigten Zahlenwerten im Modelfenster die Schwingung eigentlich nicht. Man müsste mit dem 'Run Controller' die Durchrechnungsgeschwindigkeit herunter setzen. Am einfachsten sieht man hier die Funktionstüchtigkeit des Modells, wenn man gleich das Diagramm (horizontal t von 0 bis 15, vertikal Δx von -0.5 bis +0.5) macht.

Wenn man das horizontale Federpendel auf ein gedämpftes erweitern will, könnte man dies in einer neuen Aktivität wie links abgebildet machen.

Die zweite wirkende Kraft ist jetzt $F_{Reibung}$. Sie soll proportional v sein und hat als Definition $-Reib_Const*v$. Auch hier ist ein Minus nötig, da diese Kraft immer entgegengesetzt zur Richtung der Geschwindigkeit wirkt. Ein pas-
sender Zahlenwert für **Reib_Const** ist 0.03. Die beiden Teilkräfte werden zu **F_ges** zusammengefasst und erst daraus wird die wirksame Beschleunigung **a** berechnet.

b) Zum Diagramm „Delta_x als Funktion der Zeit t“
horizontale Achse: unabhängige Variable **t** mit einer Skalierung von 0 bis 15
erste vertikale Achse: Variable **Delta_x** mit einer Skalierung von -0.5 bis 0.5; **blau**
Auch bei der gedämpften Federschwingung kann dieses Diagramm verwendet wer-
den.

c) Zur unabhängigen Tabelle „Table 1“
Für das leichtere Ablesen interessierender Zahlenwerte beim Scannen machen wir
eine unabhängige Tabelle, in der **t**, **Delta_x**, **v** und **a** angezeigt werden.

Horizontales Federpendel (gedämpft)

**1) Mein eigenes Modellfenst-
er:**
Auf 75% verkleinert !

2) Mein Diagramm „Delta_x als Funktion der Zeit t“ für die Startwerte m=0.1 kg, k = 0.2N/m, x=0.3m und Reib_Const=0 s/m:

Vervollständige:
Periodendauer **T** und Frequenz **f** eines Federpendels sind **konstant**. Ihre Werte
werden von der Masse und von der Federkonstante bestimmt.

3) Mein Simulations-Diagramm für Massen von **m = 0.1, 0.2 und 0.4kg** bei den
Startwerten **k = 0.2N/m, x=0.3m** und **Reib_Const=0 s/m**:
Siehe nächste Seite !
Vervollständige: Bei vierfacher Masse ist die Periodendauer genau **doppelt** so groß. Die Periodendauer eines Federpendels ist direkt proportional zur **Quadratwurzel** der Masse.

4) Mein Simulations-Diagramm für Federkonstanten von $k = 0.2$, 0.4 und 0.8N/m bei den Startwerten $m = 0.1 \text{kg}$, $x = 0.3 \text{m}$ und $\text{Reib}_\text{Const}=0 \text{ s/m}$:

Vervollständige: Bei vierfacher Federkonstante ist die Periodendauer genau **halb** so groß. Die Periodendauer eines Federpendels ist **indirekt proportional** zur Quadratwurzel von k.

Es gilt offensichtlich: $T \sim \sqrt{\frac{m}{k}}$; exakt gilt: $T = 2\pi \sqrt{\frac{m}{k}}$.

5) Mein Function-Fit-Fenster für die gedämpfte Schwingung mit allen unseren Startwerten (0.3m Auslenkung, 0.1kg Masse, 0.2N/m Federkonstante und 0.03s/m Reib.Const).

Verlängere dazu zuerst die Zeitachse auf 15 Sekunden und passe den Funktionstyp $f(x) = a \cdot \exp(-b \cdot x) \cdot \sin(c \cdot x + d) + e$ ein, wobei der Parameter $a=0.3$ und $e=0$ gesetzt werden sollen.
Der Parameter c ist der Zahlenwert für die **Kreisfrequenz** ω. Berechne daraus die Frequenz und Periodendauer der Schwingung. Es gilt: $\omega = 2\pi f = 2\pi/T$

Ergebnisse: $c = 1,41 = \omega \Rightarrow f = 0,224 \text{ Hz} \Rightarrow T = 4,46 \text{ s}$

Vervollständige: Auch bei einer gedämpften Schwingung sind *Periodendauer und Frequenz* konstant.

Es war sehr schön, es hat mich sehr gefreut!
4 LITERATUR

Sonstige Quellen:
„Handbuch“ und Hilfe der Coach6-Software

Internetadressen:
http://www.cma.science.uva.nl/english